‘ Future Computing ‘

D 3
) T

¢ ‘ON SUOIllUBAU|

—
(-
QO
\
D
()
D)
wn
o]

[==I=]

Virtual Hensel (/\—F)L - N>E)L)
A Demonstration of Exact Computing
with 2-adic Arithmetic

James Douglas Boyd

SciSci Research, Inc. + Future Computing

SciSci Research, Inc.
Boulder, Colorado, United States
WWW.SCi—SCi.org

Copyright © 2025 by SciSci Research, Inc. All Rights Reserved.
Citation Format:
Boyd, J.D. (2025). Virtual Hensel (/N\—F + JL - N>t JL): A Demonstration of Exact

Computing with 2-adic Arithmetic. SciSci Inventions, 1(2). DOI: 10.5281/
zen0do.17026958

CONTENTS CONTENTS

Contents
1 The Virtual Hensel 2
1.1 Report SCope e e 2
2 How the Virtual Hensel Works 3
21 FC-3-2025 Encodings 3
22 The x-IDSystem e 3
2.3 Load-Store 4
231 Loading . . . 4
232 Storing . . . 8
2.4 Computation e 8
2.5 AWorked Example e 10
3 Discussion 13
3.1 Operand Capacity Scaling o 13
3.2 ArithmeticReach 14
3.3 The Cost-Savings of Exact
Computing . . . 16

SciSci Inventions No. 2, Version 1 1716

1 The Virtual Hensel

This report is a resource to accompany a
forthcoming public demonstration of Virtual
Hensel |, which is to be the first demo of a vir-
tual machine based on the Hensel CPU ar-
chitecture. The Hensel CPU architecture, de-
signed to perform exact arithmetic, presents
an alternative to floating-point computing,
which, by comparison, is but approximate.
Exact arithmetic is performed in the field Q,,
i.e., the field of 2-adic numbers, rather than
R. The original Hensel CPU report gives an in-
froductory — albeit notation-heavy — descrip-
fion of coding standards for 2-adic operands
and instructions, and a sketch of an architec-
ture for efficient 2-adic computations. Func-
fioning as a proof-of-principle via in silico em-
ulation of this architecture, Virtual Hensel |
gives a first demonstration of the realizability
of Q,-based exact computing.

Being of modest demonstrative capability,
the Virtual Hensel | can perform exact arith-
metic on just over 50,000 operands. That is
to say, all 50,000 have FC-3-2025 encodings
(with FC-3-2025 being a new standard for y-
IDs infroduced in this report), and can be
loaded to the 32 processor registers in the Vir-
tual Hensel | processor cluster. The forthcom-
ing Virtual Hensel | demo illustrates explicitly
how operands are loaded to processor reg-
isters and how instructions are executed by
2-adic arithmetic logic units (2AALUS).

1.1 Report Scope

Necessarily building upon the architectural
description provided in the original report,
this report is written in a manner avoidant
of undue repetition and redundancy, though
at fimes recapitulating (in sparser detail) cru-
cial descriptfions given in the original in or-
der to provide background for infroducing
new developments. For instance, an exten-
sive review of FC-1-2025 operand encodings
(including the Rec, Lgc, and Tgc blocks of
the encoding) will not be subject to elabo-
ration here. Nonetheless, a light recapitulo-

SciSci Inventions No. 2, Version 1

THE VIRTUAL HENSEL

fion of FC-1-2025 is in order so as to provide
a premise for infroducing FC-3-2025. So far
as descriptive content is concerned, priority
is given fo that which was left wanting in the
originalreport, particularly concerning the y-
ID system and load-store architecture, each
of which, despite being subject to nontriv-
ial discussion in the original report, has en-
joyed improvement as the task of realizing a
proof-of-principle for general exact comput-
ing with the Hensel architecture was under-
tfaken in building Virtual Hensel |.

Following the updates on x-IDs and load-
store, the report will proceed with a descrip-
tion of Virtual Hensel | itself, with partficular at-
fention paid to the processor, covering pro-
cessor register addresses and locations in the
cluster, as well as 2AALU execution of arith-
metic instructions. These descriptions will be
complemented by both worked examples
and Virtual Hensel | visualizations. The report
concludes with wider analysis of the implica-
tions of the Virtual Hensel | proof-of-principle
for the more general prospect of exact com-
puting with the Hensel architecture. With Vir-
tual Hensel | being of modest performance,
this section focuses particularly on prospec-
five scaling properties, including the scalabil-
ity of processor operand capacity, the arith-
metic reach of processor operations, and the
cost-savings of exact computation relative
to floating-point.

Those desiring an overall, gentle exposition
on the Virtual Hensel and Hensel CPU archi-
tecture can refer to the forthcoming demo
exposition video, to be released by SciSci Re-
search and Future Computing in due course.
This report includes stylized illustrations from
the Virtual Hensel | demo, and thus, "snap-
shots" of the kind of content to be presented
in the video. The demo video itself will
be largely expository in nature, intended to
provide an accessible infroduction to exact
computing. Thus, following the release of the
demo video, this present report may be of in-
terest as a deeper resource for those seeking
a technical reference on Virtual Hensel |.

2/16

https://www.sci-sci.org/hensel-cpu

2 How the Virtual
Works

2.1 FC-3-2025 Encodings

The Virtual Hensel’s load-store architecture
and arithmetic operations are designed for
operands encoded according to FC-3-2025,
an encoding standard for x-IDs introduced
herein. Compared to the FC-1-2025 stan-
dard from the original report, the distin-
guishing features of FC-3-2025 are but slight.
FC-1-2025 encoded the coefficients of 2-
adic expansions unfil reaching a repeti-
five subsequence. For instance, a 2-adic
number 011101.11, is encoded by FC-1-2025
as (L,0,1,1,1,1,0,1, 1,1,1), where (0,1) be-
longs to the repetition block Rec. (1,1,0,1)
belongs to the decimal-left block Lgc, and
(1,1) belongs to the decimal-right block Tegc.
The advent of FC-3-2025 was the insight
that these blocks are additive: the 2-adic
expansion giving 011101.11, is just the sum
of the individual separate expansions giv-
ing 01, 1101.,, and .11,, or, in terms of FC-1-
2025, a merging of the blocks (1,0,1, 1, 1),
(L,1,1,1,0,1,1), and (L,L,1,1,1). Thus,
the FC-3-2025 standard generates encod-
ings from individual blocks, which are treated
as primitives.

Hensel

A key consequence of this construction is
that FC-3-2025 does not necessarily include
all coefficient terms in the 2-adic expan-
sion before the repetitive subsequence, re-
sulting in encodings that differ from FC-
1-2025. Consider, for instance, g which
is but 2—2. The FC-1-2025 encoding is
(L,0,1,1,1,0,0, 1), because the 2-adic ex-
pansion is 22 + 23 + 25 427 .., giving 01100.,.
However, the FC-1-2025 encoding for —% is
but the single block (L, 1,0, L, 1), and the FC-
1-2025 encoding for 2 is but the single block
(L,1,1,0,1). Thus, the FC-3-2025 merges
these two FC-1-2025 blocks, as primitives, just
as one would add 2 and —%. So, the FC-3-
2025 encoding is (L,1,0,1,1,0, L). A more
rigorous definition of FC-3-2025 can be given
with reference to the x-ID system, the topic
of the next subsection.

SciSci Inventions No. 2, Version 1

HOW THE VIRTUAL HENSEL WORKS

2.2 The y-ID System

The Hensel CPU architecture endows the
processor with a cluster of register proces-
sors and 2AALUs. The cluster, possessing a
nested structure described in the original re-
port, facilitates operand loading and arith-
metic operations in a manner tailored to effi-
cient 2-adic computation. Register proces-
sors are assigned specific addresses, such
as (1,1,0,1) or (1,1) which match FC-3-2025
block primitives. Thus, an FC-3-2025 encod-
ing for an operand built from block primi-
fives is loaded to the processor by activating
the processor registers with addresses match-
ing these blocks. Operands are thereby
loaded in distributed fashion, with the individ-
ual blocks that give their FC-3-2025 encod-
iNngs each loaded to a distinct processor reg-
ister with the appropriate address. Match-
ing is facilitated by treating these block prim-
itives as IDs to be matched with proces-
sor register addresses. These are the so-
called x-IDs; they are the coefficient se-
quences encoded in FC-3-2025 primitives,
which, matched against processor regis-
ter addresses, permit distributed loading of
operands to the Hensel processor.

Thus, the Hensel CPU loads operands ac-
cording to the x-ID system, as described
herein. For a given operand q., the ID x(q)
may consist of several components. A prim-
itive ID x? encodes a 2-adic number given
by but a single Rec, Lgc, or Tgc block. For
instance, FC(1) is encoded as Lgc(yy = (1).
FC(3) Is encoded as Tee(1) = (1). FC(—3) Is
encoded as Rec(_1y = (0, 1). The thing fo em-
phasize is that encoding each of these num-
bers requires only a single Rec, Lrc, or Tgc
block; none requires mulfiple blocks (e.g..
both Lgc and Rec blocks). Isolating these Rec,
Lrc, or Tgc blocks, one obtains x* primitives:
(1) is a primitive, and so too is (0,1). Hensel
load-store matches x? against processor reg-
ister addresses in the processor cluster.

xP primitives can then be merged — and their
encoded 2-adic expansions thereby added
- to obtain encodings for other operands;

3/16

https://www.sci-sci.org/hensel-cpu
https://www.sci-sci.org/hensel-cpu
https://www.sci-sci.org/hensel-cpu

Load-Store

this is how FC-3-2025 encodings for > 50,000
operands for Virtual Hensel | were algorithmi-
cally generated. Forinstance, as —% +1 = £,
the encoding for FC(%) can be obtained by
merging the x* for FC (—1) and FC(1): the en-
coding is FC(3) = (L,(0,0,1,1), L, (1), L, (). It
is said that FC (%) has a compound D, x¢,
built from primitive IDs x*.

A given x© can, in furn, be decompounded
info constituent Regc, Lgc, or Tec blocks. These
are writften as x?*’,,,) (i.e., the Rgc block),
X?,,*’,) (i.e., the Lgc block), or X?,,,,*) (ie.,
the Tgc block), where, for specific encodings,
we replace = with the length of the block.
Thus, an FC-3-2025 encoding for an operand
q is defined as follows:

FC(a) :=
(J-7X?*’7’7)7J—7X?77*’7)7J-1X?7’7,*)) (])

where xf,) =FC(na), x{_._,=FCne).
X{__ .y =FC(nc)., and na +ng +nc = q, the 7
being 2-adic expansions. The Virtual Hensel
| demo supports computations on operands
with compound IDs up fo a x(; 5 5, encoding
ceiling: there are over 50, 000 such operands.

Generating operand IDs algorithmically ac-
cording to compound consfruction is ef-
ficient and amenable fo scaling. Fur-
thermore, it respects the arithmeticity of
operands by design; that is to say, one ob-
tains a large number of operand pairs whose
sum or product (or additive or mulfiplicative
inverse) is also an operand encoded within
the x{s 5 5) Celling. That x{; 5 5, is selected as
the ceiling owes to the nest depth of the Vir-
tual Hensel processor. Its cluster, =y, is of
nest depth 5 (+2). Thus, it contains 2° = 32
processor registers, which can thus match
with X?n7777), X?, _y.or X?—,—,n)' with n < 5,

1n7

One might note that this constructive ap-
proach to generating IDs will necessarily yield
multiple IDs for the same operand. For in-
stance, if one constructs a x¢ with the x?° for
some operand q as well as the x° for both
FC(—1) and FC(1), the resulting x¢ merely en-

SciSci Inventions No. 2, Version 1

HOW THE VIRTUAL HENSEL WORKS

codes q, because, additively speaking, the
—1 and 1 cancel each other out; one could
have just used ((), (), x(—,—.n (FC(a))). rather
than (x,-—) (FC(-1))), (x(-1.-) (FC(1)).
and (x(-,—.n (FC(q))) fogether. However,
such superfluity can be discarded by filter-
ing out generated IDs for minimality. x-IDs
are always built from sums of x? (rather than
x). and minimize both block length and
the number of primitives included. That is
to say, one selects the FC-3-2025 encoding
X{min(n),min(m),min(ly) - WNEre, when permissible,
min(—) = 0.

2.3 Load-Store
2.3.1 Loading

The load-store unit (LSU) loads operands to
processor registers (PRs) in the processor clus-
ter. Each PR has a unique address, and is
loaded with x-IDs that match. For instance,
suppose that the address 21 of a clustered
processor register Cpgr is 2A (Cpr) = (1,1). The
PR can be loaded, for instance, with an
operand with ID x{_ _,, = (1,1) (i.e., 3) be-
cause there is a x-to-2l match. The pro-
cessor register is loaded by being acftivated
with a r-sequence 7 o 1) (Where (0,0, 1) cor-
responds to (—, —,x), indicating that the -
ID matched is a X?_,_y*)—ID). Thus, we write
the loaded PR by address and activation se-

quence; in this case, it is (¢), . The informa-
tfion encoded in r-sequences is crucial for re-
compounding the individual x°-IDs back into
a compound ID x¢ following a computation
for storage. Thus, an operand is loaded in dis-
fributed fashion across processor registers in
the processor cluster by activating PRs whose
addresses match the x°-IDs that compose

the FC-3-2025 encoding of the operand.

=yt contains 32 different Cpr, each with
a unique address 2 (Cpr). Two addresses
have one nontrivial entry: (0,0,0,0,0) and
(1,0,0,0,0,0). Two have two nontrivial en-
fries: (0,1,0,0,0) and (1,1,0,0,0). Four
have three nontrivial entries: (0,0,1,0,0),
(1,0,1,0,0). (0,1,1,0,0), (1,1,1,0,0). Eight ad-

4716

Load-Store

dresses have four: (0,0,0,1,0), (1,0,0,1,0),
(0,1,0,1,0), (1,1,0,1,0), (0,0,1,1,0),
(1,0,1,1,0), (0,1,1,1,0), and (1,1,1,1,0). Six-
teen of the addresses have five nontrivial

entries: (0,0,0,0,1), (1,0,0,0,1), (0,1,0,0,1),
(1,1,0,0,1), (0,0,1,0,1), (1,0,1,0,1),
(0,1,1,0,1), (1,1,1,0,1), (0,0,0,1,1),

0011 1011 0111 1111

HOW THE VIRTUAL HENSEL WORKS

(1,0,0,1,1), (0,1,0,1,1), (1,1,0,1,1),
(0,0,1,1,1), (1,0,1,1,1), (0,1,1,1,1), and
(1,1,1,1,1). These alone, thanks to a num-
ber of efficiency ftricks ascertained and
deployed in the development of the Vir-
tual Hensel, can handle over 50,000 distinct
operands.

00001 10001 01001 11001

I 00101 10101 | | 01101 01011 I

I 00011 10011 | | I|

00111 10111 01111 11111

Figure 1: A labeled illustration of the 32 addresses 2l (Cpr) addresses for the cluster processor
reqgisters in the Virtual Hensel. The blue entities visualize register processors carriers, and the grey
enclosures visualize 2AALU carriers and packaging. (Trivial entries in addresses are omitted; for

instance, (1,0,0,0,0) is labeled merely as (1).)

SciSci Inventions No. 2, Version 1

5/16

Load-Store

As one will quickly notice when generat-
ing FC-3-2025 encodings for operands, there
are indeed FC(q) operands whose x° do not
match any of the 32 2(Cpr) Qiven above.
Nonetheless, with a few tricks, all operands
up fo x‘;55 can nonetheless be made
compatible with =y load-store; they are
=yirt-loadable.

The first trick is as follows. Whereas a X?f,f,n)‘
ID (for 1 < n < 5) always matches one of the
32 2L (Cpr), ONe finds that X IDs must be
reversed, as they read from rlgh’r to left. Thus,
one applies a reverse operator v to these

and matches ¢ (X?—rn,-)) with the appropri-
ate A (Cpr). Of course, X?n,f,f)_IDS also read

from right to left, but a different tfrick is de-
ployed for them.

This brings us to the second trick. The key dif-
ference between X(B ond X(—IDs is
that the latfter are more numerous Thon the
former. For instfance, whereas one will not
find a X< _y-ID with block entries (0,1,1) (or,
when reversed (1,1,0)) - the 0 entry being
superfluous — one does find a X?nﬁf)-ID with
block entries (0,1, 1). After all, in the case of
the X(n ID encoding the repetitive block
Rec in rhe FC 1-2025 encoding, 0 entries are
not superfluous: all entries in a repetitive sub-
sequence are needed. Thus, merely revers-
iNg x¢{, __,-IDs does not rectify the address-
matching issue. The issue is that X?nyﬁ)—IDs
(for 2 < n < 5) beginning on the right with 0
cannot be loaded (for there are no 2L (Cpgr) O
match). Nonetheless, the IDs can be loaded
if they are shifted so that they begin on the
right with a 1 term. This is permissible, given
that these IDs encode repeated sequences,
SO long as one keeps track of the shift ferm
¢, which amounts to a ferm subtracted from
the repeated sequence. This ferm will be en-
coded with its own x-ID. Because it is intfeger-
valued, its x-ID is always a X?_,n,_) block.

A load task for an operand q can be decom-
posed into up to four distinct loads A, with
up to four distinct 2L (Cpr) destinations, which
we'll write as A (Chg). 2 (CBr). A (CSr). and

SciSci Inventions No. 2, Version 1

HOW THE VIRTUAL HENSEL WORKS

2 (CBR). The loads are written as follows:
M(FC(q)) :
(s (¥t (FE(@)) (5=,)) =
Chr (‘«’li‘f,"’_, ;)>) @)

/\B(FC(Q)) :
(t (X?e,n,e)(FC(Q))) , (=%, —)) -

& (wl) @

q :
((xt- - (FC@)) (= =) =
e (273) @
and

AP(FC(a)) :
(t (X?—,n,—)(FC(Q))) s (=%, 7)) -

CPR< X(_' _))> ®)

Consider the example of . It's the sum
of -1, 1, and 2, all of which have x*
FC-3-2025 encodings; thus, its compound
D, X“(FC(¥)) = (L,(0,1), L,(1,0), L, (1)),

is decompounded |n’ro X(Zfﬁ):(o,l),

X{_ oy =(10), and x{_ ;) =(1). In this
case, X?*;Z*) = (1,0) doesn't match any of
the 32 A (Cpr), but t(X?_,Z_)) = (0,1) does.

(Note that x° are right-padded to length five
for A-matching, such that (0,1) is freated as

(0,1,0,0,0).) As for (ngf)) — (0,1), there

is no need for a ¢-shift, as it begins on the
right with a 1 term. Thus, the loads are

W (FC(2)) : ((0,1), (3, - =) = By (30),
AB (FC () £ ((0.1), (%,) — CBs (220).
A (FC () (1), (= =) — €S (A7),

6/16

Load-Store

Consider, on the other hand, the operand
2. Here,

() -
(L,(0,1,0,0,0),1,(1,0,0,0), L, (1)) (&)

X{_,_1 = (1) matches a PR address, as ex-
pected. X?—A,—) =(1,0,0,0) need be re-

HOW THE VIRTUAL HENSEL WORKS

versed fo ‘C(X?_A’_)) =(0,0,0,1) to match.
X?s’_’_)=(0,1,0,0,0) need be shifted, for
there is no processor register whose address
matches (0,1,0,0,0). There is, however, a
processor register whose address matches
(0,0,0,0,1); thus, one need only shift
(0,1,0,0,0) fo the right by three positions (i.e.,
such that xf (FC(%3 —«<)) = (0,0,0,0,1),
where x{_, () = (1,1)).

Load Examples

13 511
6 62
(o] [Cmoom] (o] | o] o) | omCom] Comcm]
== ||[E=E=)|| ==
= (E=e)|| ||[E=E=)|| ==
= (E=)|| ||| ==
== (== (=)
= ([E=E)|| ||[E==)| ==
= (E=E)|| ||[E=e=)| ==
== ||| ==
(o] [Coom] (o] | o] [| o] Focm]
== ||[E=E=)|| ==
=E||(E=e)|| ||[E=E=)| ==
=E||(E=E)|| ||| ==

Figure 2: lllustration of the 2 addresses for loads A (FC(£)), AB(FC(£)), and A°(FC(%)), as well
as M(FC(3)), AB(FC(3)), A“(FC(34)). and AP(FC(3})). The top panel illustrates AP loads; the
second highest, *; the second lowest, AB; and the lowest, A€,

SciSci Inventions No. 2, Version 1

7/16

Computation

Let us review. Each operand has an FC-3-
2025 encoding which is decomposed into
Rrc. Lrc., and Tgc portions (i.e., x° IDs), which
are loaded in distributed fashion to various
processor registers in the processor cluster
with matching addresses. A given operand
can be decomposed and loaded to up to
four distinct processor registers, distributed
throughout the processor cluster. The pro-
cessor registers are loaded by being acti-
vated with a w-sequence which contains
information about the kind of x°-ID being
loaded, which is used for re-compounding
x°-IDs back to x¢-IDs, the latter necessary for
storage.

23.2 Storing

Following an arithmetic computation (dis-
cussed in the next section), the processor re-
turns an output. The output too is loaded to
the processor registers, which we’ll write as
Ch,, CB.. and CS. as well as a possible shift-
term-loaded PR, CB;. Matched against the
addresses for Chr., CB. and CS, (and possibly
CBr,) are the x°-IDs for this output. In order for
the output to be stored, it must be recom-
pounded back to a x*-ID.

Recompoundment begins when the master
PR Mpg receives the three or four x° from the
LSU, which it retrieves from Chg. C8r. and CSq
(and possibly CB:). Mg then sends these to
MoaaLy. Which composes them into an FC-
3-2025-encoded operand for LSU-facilitated
storage. The master 2AALU performs the fol-
lowing compoundment:

" (< (XCPA;) o (Xcsé) Xegy Xc&;) -
-1
(g +xezg " () xegs) @

where 1 is a reverse-reverse operation.

2.4 Computation

2AALUs in the Hensel processor perform
arithmetic operations on each x°-ID of an
operand encoding, yielding an output with

SciSci Inventions No. 2, Version 1

HOW THE VIRTUAL HENSEL WORKS

a new collection of x°-IDs. Under the Hensel
load-store architecture, these x°-IDs, if differ-
ent from those for the input operand, must
be loadable to distinct processor registers
with matching addresses. Thus, the way
the Hensel processor performs arithmetic is
by modifying (i.e., performing arithmetic on)
individual x°-IDs, and then passing the =-
seguences from the processor registers with
the input-x°-ID-matching-addresses to new
ones that match the modified x°-IDs.

The relationship between 2AALUs, arithmetic
modifications, processor register positions,
and the nested structure of the processor
follows straightforwardly from the circuit-level
combinational logic according to which
2AALU operations are executed and FC-2-
2025 instructions are implemented. This is the
topic of the 2AALU report. For now, it suffices
to give a rather qualitative description of this
relationship, an explanation of which is to be
found in the 2AALU report,

With there being five 2AALU levels in =4 and
2% processor registers, and the x°-IDs being of
maximum block length 5, a 2AALU at each
level performs a modification on a different
enfry in the x°-ID, in parallel, with the right-
most entry modified at level ¢ =6 and the
leftmost entry modified at level ¢ = 2. Then,
at each level where a modification is per-
formed, there is a corresponding enfry mod-
ification in the x°-ID at the entry position
corresponding with the level, with each en-
tfry modification in turn changing the out-
put x°-ID, and thus the Cpr to which the
x°%-ID is to be loaded. With 2AALUs pack-
aged in nested carriers (the processor regis-
ters packaged at the innermost level), and
with processor register addresses determined
by location in the nested processor structure,
there is a direct correspondence between
2 values and circuit board locations of PRs.
Thus, a 2AALU modifying a single entry in
a x°-ID block in turn affects the location in
which the address-matching processor reg-
ister will be located. Moreover, because,
in the nested structure, each 2AALU has
only one other same-level-¢ 2AALU neighbor
packaged within the same level-(¢ + 1) car-

8/16

https://www.sci-sci.org/2aalus

Computation

rier, a modification by a given 2AALU yields
an output whose Cpr location is within the
nested carrier packaging of its neighbor. It
is for this reason that a modification is af
fimes referred to by the shorthand term "hop";
it yields an output stored in a Cpr located
in the neighboring nested carrier package,
such that a modification amounts to "hop-
ping" from one nested carrier package to an-
other. At outermost levels in the nested struc-
ture, these hops span over the circuit board,
whereas the hops are less distal at innermost
levels, as one would expect given the nested
nature of carrier packaging.

The Cpr are surface-mounted to the printed
circuit board according to address, such
that, for instance, two processor registers
which are packaged in the same nested
carrier packaging save the innermost 2AALU
level differ in address by only one entry (the
leffmost entry), and will neighbor one an-
other on the circuit board. If they differ only
in a nontrivial entry further to the right, then
their nested carrier packaging will differ at
a higher level, such that the processor reg-
isters will be more distally positioned on the
board. Moreover, for any two process reg-
isters Cpr aNd Cpg. the number of entries by
which the addresses 2(Cpr) and 2A(Cpg) differ
is the same as the number of levels at which
their nested carrier packaging differs. (This is
allmade clearer by Figure 1, which shows the
A-labels of the 32 Cpr.)

Herein, we will describe 2AALU operations us-
ing the high-level shorthand of "hop calcu-
lus", eliding underlying combinational logic,

SciSci Inventions No. 2, Version 1

HOW THE VIRTUAL HENSEL WORKS

and "r-sequence passing’ as a higher-level
shorthand for the load-store procedure for
outputs of 2AALU arithmetic. A more de-
tailed tfreatment of combinational logic and
circuit design can be found in the 2AALU re-
port.

Arithmetic is performed on FC-3-2025-
encoded operands according to FC-2-2025
instructions, which guide the 2AALUs by
specifying the entries in an operand encod-
ing to be modified, and the 2AALU level at
which the modification is to take place. "Hop
operations" are a shorthand for 2AALU oper-
ations. If the modification at level ¢ is made
from 0 to 1, then a forward hop h{ is taken. If
the modification is made from 1 to 0, then @
backward hop h7 is taken.

Hops can occur at any of the five 2AALU lev-
elsin =y". According o the processor design
given in the original report, the overall pro-
cessor will have 5 (+2) levels, with the lowest
level (i.e., ¢ =1) for the Cpr and the great-
est level (i.e., ¢/ =7) for the Mpr and MaaLu-
The middle five are for 2AALUs. A hop h{_,
is then equivalent to adding (1,0,0,0,0) to
a x° hf_;, adding (0,1,0,0,0); h_,, adding
(0,0,1,0,0); hy_,, adding (0,0,0,1,0); and
h_¢. adding (0,0,0,0,1). Likewise, a hop
h7_, is equivalent to adding (-1,0,0,0,0) to a
X% hy_;. adding (0,-1,0,0,0); h7_,, adding
(0,0,-1,0,0); h7_,, adding (0,0,0,-1,0);
and hy_s, adding (0,0,0,0,—1). If a x°,
such as (1), is of length >5, it is right-
padded in 2AALU arithmetic, such that
(0,1) + (1,0,0,0,0) = (0,1,0,0,0) + (1,0,0,0,0),
summing o (1,1).

9/16

https://www.sci-sci.org/2aalus
https://www.sci-sci.org/2aalus
https://www.sci-sci.org/hensel-cpu

A Worked Example

HOW THE VIRTUAL HENSEL WORKS

EE|m= T INCY
“TINCY. TN
T I T INCY.
h3
hg 1[14-- EE|imm
hg 1

Figure 3: lllustration of hop visualization in the Virtual Hensel demo. A forward hop h7 gives
an output located upward or rightward of the input, and a backward hop h§ gives an oufput

upward or leftward of the input.

2.5 A Worked Example

Let’s take the example of FC (23) + FC (33).
which of course yields FC (X£7). We can be-
gin all the way at the beginning, with 2-adic

expansions. The expansion for 59 is

59
12
27242428 4 2% 420 4 28 4 010 L 012 (B)

This, in turn, can be thought of as a
sum of the expansion for 3 (which is
simply 272), the expansion for 5 (which
is simply 1422), and the expansion for
-1 (which is simply 1-4+2242%426).
Sure enough, 5+ —-1=3. Let's next
fun to the yP pnml’rives for each.
x*(3)=(0,1); thus, x} _ 2)(2) =(0,1).
Next, x?(5)=(1,0,1); thus, it is the case

that t<x?_,37_) (%)) —(1,0,1). Finally, be-

SciSci Inventions No. 2, Version 1

cause x*(—3)=(0,1), it is the case that
X(z.—) (12) = (O 1)-

Let’s repeat for . The expansion is

49

3=

273 422142422420 420408 . (9)
This is a sum of §=2—3+2—2, 2=2! and
—§=1+22+24+2‘°'+28 X" (3) =(0,1,1);
thus, x5 (%) = (0,1,1) Next, be-

cause t(XP())=(0,1), it is the case that
t(x o) (8))=©1). Finally, for Rec,
X" (—3) = (0,1); thus, it is the case that
X?z,f,— (52) = (0,1).

Lastly, ¥ =-247+3, so one gets
the following: X(_ _3) (%7) = (1,0,1),

t(X(3,)(167))2(1,1,1), and, finally,
X%y (%7) = (1,0). s-shiffed to (0, 1).

10/16

A Worked Example

HOW THE VIRTUAL HENSEL WORKS

Figure 4: Arithmetic example: 3 + 7 = 10. The input FC(3) is loaded to the Cpg with address 2%

(_737_)

and the output FC(10) is loaded to the Cpr with address ng‘ff’_l)) following the computation

(hg.hg,hg)

The computation in =y fakes x5 (33).
t(x?_&_) (?—g)) and x{, (32) as inputs
andgives x?_ 4 (%)t (X?,,&,) (%)) ,and
X%, (%) as outputs.

The arithmetic modification on x?_ _, (33)
(with input (0,1) and outfput (1,0,1)) in-

volves three hops: hJ_,, h7_;, h7_,, which adds
(0,0,1,0,0), subtracts (0,1,0,0,0), and adds

SciSci Inventions No. 2, Version 1

(1,0,0,0,0), respectively. The modification of
t(X?f,s,—) (%)) (with input (1,0,1) and out-
put (1,1,1)) involves one hop: hy_;. Finally,
X{.— _ (33) requires no modification.

One might note the tediousness with which
this computation must be written in notion,
as compared to the simplicity with which it
is captured visually by the Virtual Hensel illus-
trations.

11/16

A Worked Example

Cluster Computation:

59 49
12 24

HOW THE VIRTUAL HENSEL WORKS

[mm][m=]

[mm][wm]

[mm] =]

[mm] =]

[mw] =]

[mw][m]

[mm] =]

[mw] =]

[mm][ma]

[mm][mm]

(mm| =]

[mm] =]

[mw] =]

[mw] =]

[mm] =]

[mm] =]

[mm] =]

[mm] =]

[=m][= =]

[mm] =]

[mm] =]

[mm][mu]

[mm][mm]

[mm][mm]

Figure 5: Visual illustration of addition: FC (33) + FC (32). The uppermost illustration displays Rec

portion arithmetic, which takes ¢ (x,—,—)(53)) =
as output; thus, the processor register address 2O

*__

24

(0 1) as input and yields t (x,—,— (%)) = (0,1)
(Cpr) for the input and output is the same.

The middle illustration displays the Lgc portion arithmetic, which takes ¢ (X(—,3,—)(12)) =(1,0,1)

as input and yields ¢ (x(_4,_y(¥7)) =

(1,1,1) as output after one hop. The lowermost illustra-

tion displays the Tgc portion arithmetic, which takes X(_7_72)(%) = (0,1) as input and yields
X(—,—3 (%) = (1,0,1) as output following three hops.

SciSci Inventions No. 2, Version 1

12/16

3 Discussion

3.1 Operand Capacity Scaling

The Virtual Hensel | processor is of nest depth
5+2 (i.e., =¥ has five levels of 2AALUs, with
the cluster PRs and master AALU/PR in turn
occupying their own levels) and can han-
dle over 50,000 operands. For a processor
of nest depth £, the number of allowable
operands can be roughly estimated as fol-
lows. Let sP3 be set of 3-tuples drawn from
the set S ={0,...£—2}. Then, S gives the
set of lists of block lengths for x°-IDs up fo
length n = £ — 2. One then accounts for all
possible x°-IDs up to length n, and all possi-

DISCUSSION

ble compoundments of possible x°-IDs into
x¢-IDs. However, inasmuch as not all possi-
ble sequences of 0 or 1 terms actually ap-
pear in FC-3-2025 encodings (e.g., there are
no X? IDs that terminate with superfluous

0 ’rerms on the left, or X(, 7 —IDs that end

with superfluous tferms on ’rhe right), we, as
a rough procedure, divide the total by n. The
formula is as follows:

IS|-1|S[-11]5[-1

Tty Y Y 2l (10)

i=0 j=0 k=0

Figure 6 plots the estimated scaling trajec-
tory for Hensel processor operand capacity
by nest depth.

Hensel Processor Operand Capacity Scaling by Nest Depth (Approximate)

T ! T

g
1

Operand Capacity

L
T

Virtual Hensel | — @

,
2° 2!

Nest Depth (£)

Figure 6: Estimated scaling behavior for CPU operand capacity by nest depth L.

SciSci Inventions No. 2, Version 1

13/16

Arithmetic Reach

3.2 Arithmetic Reach

Beyond operand capacity, one might in-
qguire info the number of arithmetic opero-
tions that can be permissibly executed on
such operands. Not all operands loadable
to the processor can be added or multiplied;
namely, pairs whose sum or product exceeds
the x(5 5 5) FC-3-2025 encoding ceiling can-
not be added or multiplied. Thus, one would
like to inquire info the set of =y-loadable
operands that are 2-ary sums or products of
=yr-loadable operands. Let O=in be the set
of all =¥ loadable operands. We wish to in-
quire info the following two sets:

{z€ Oz |[z=x+YyAX Yy E Oz} (1M
{w €Oz [w=xxyAxy €Oz} (12

Due to the sheer combinatorics of possible
pairs of loadable operands, we can but con-

="_| oadability For Sums of

—=virt
_5

DISCUSSION

duct empirical studies of samples. We wiill
take 2000 random samples of D=, each of
size 15 and, of the 225 admissible operand
pairs obtainable from each sample, check
to see which give sums or products that also
belong 0 O=yin.

This sample-checking approach gives the
following empirical result. 26.7 +9.7% of the
225 pairs sum o a O=y« value. 0.67 +0.79%
pairs multiply to a ngm value. Thus, one
infers that the =~ 52,000 operands loadable
to the Virtual Hensel | may be subject to
~ 7.2 x 108 + 2.6 x 108 distinct 2-ary addition
operations, and 1.8 x 10" 2.1 x 107 distinct
2-ary multiplication operations. While thhe
overdispersion of this last statistic is some-
thing of an eyesore, one can nonetheless
glean from estimates given here how arith-
metic reach scales with operand capacity.

-Loadable Operand Pairs

150

100

50

0

0.0 0.2

0.6 0.8

Figure 7: Distribution of the portion of sampled pairs {x,y} € Ozyn @ D=y that give sums z € Ozyin

SciSci Inventions No. 2, Version 1

14/16

Arithmetic Reach

One might then ask about the distribution
of sum and product values that are mem-
bers of Ozyin. Preferring for this distribution
tfo be as uniform as possible, one might
wish to confirm that their distribution doesn’t
display discernible patches. Figure 8 plots
{w Eﬁzgm | (W=xXyVw=x+y)AXy Eﬁzgm}
where §E;m is a random sample of 1000 en-

DISCUSSION

tries from DE;M. That is to say, it plots all pairs
from §E;m whose sum or product also be-
longs to ﬁzgm. As one can see, the values ex-
tend outward roughly to 32 along each axis.
Density is heterogeneous, but one doesn’t
find worrisome patches that cannot be at-
tributed to sample size.

35 37w

.Ilsl

Figure 8: A plot of pairs drawn from D=y, where [Dz« |

'I'O §:virt
=5

SciSci Inventions No. 2, Version 1

= 1000, whose sum or product also belongs

15/16

The Cost-Savings of Exact
Computing

3.3 The Cost-Savings of Exact
Computing

SciSci Research and Future Computing are
working to redlize exact accelerated com-
puting to address a critical juncture in the
computing industry. Computing perfor-
mance is now scaling to a point where
floating-point errors dangerously accumu-
late. The IEEE floating-point standard gives
approximations up to 64 bits, or 15 deci-
mal places. Petascale computing achieves
10* floating-point operations per second
(FLOPS). Thus, petascale is literally the turn-
ing point where the cumulative error of float-

DISCUSSION

ing point, per second, is no longer less than
one. Petascale computing is not simply the
purview of national laboratories or special-
ized supercomputing projects; the Nvidia
Grace Blackwell is petascale. As shown in
Figure 9, the cumulative costs per second of
floating-point errors explode beyond petas-
cale. Thus, the cost-savings of exact com-
puting scale profoundly as operations-per-
second performance climbs beyond petas-
cale. It is for this reason that SciSci Re-
search and Future Computing are endeav-
oring to begin a revolution in exact acceler-
ated computing with the Hensel CPU archi-
tecture, beginning with Virtual Hensel |.

IEEE Floating-Point Error Cost Per Second

104 Y I

Zetascale ~

Exascale ~

Petascale ~

Terascale ~

10—4.._

Cumulative Approximation Error Per Second

~-Gigascale

FLOPS

Figure 9: Cumulative approximation error per second for floating-point computing at varying
FLOPS milestones, from gigascale computing to zetascale.

SciSci Inventions No. 2, Version 1 16/16

SciSci Research
PNYPY D —Y%

Published by SciSci Press

	The Virtual Hensel
	Report Scope

	How the Virtual Hensel Works
	FC-3-2025 Encodings
	The -ID System
	Load-Store
	Loading
	Storing

	Computation
	A Worked Example

	Discussion
	Operand Capacity Scaling
	Arithmetic Reach
	The Cost-Savings of Exact Computing

