
 SciSci Research, Inc. + Future Computing

Inventio
ns N

o
. 1

sci-
sci.org/hensel-

cpu

D
O

I: 10
.5

2
8
1/zenodo.172

8
8
8
5
4

HENSEL CPU (ヘンゼル CPU):
A 2-Adic Computing Architecture for
Exact Arithmetic

James Douglas Boyd

SciSci Research, Inc.
Boulder, Colorado, United States
www.sci-sci.org

Copyright © 2025 by SciSci Research, Inc. All Rights Reserved.

Citation Format:

Boyd, J.D. (2025). HENSEL CPU (ヘンゼル): A 2-Adic Computing Architecture for

Exact Arithmetic. SciSci Inventions, 1(1). DOI: 10.5281/zenodo.17288854

CONTENTS CONTENTS

Contents

1 Introducing Hensel 2
1.1 A CPU Architecture for Q2 . 2

1.1.1 Defining Exactness . 2
1.1.2 The Question of Technical Risk . 3
1.1.3 The Prize of Exact Arithmetic . 3

1.2 Report Scope . 4

2 Novel Architectural
and Coding Features 5
2.1 Encoding Standards . 5

2.1.1 FC 1-2025 Operand Encoding . 5
2.1.2 FC 2-2025 Instruction Encoding . 5

2.2 The Hensel Processor . 5
2.2.1 2AALUs . 6
2.2.2 PR Cluster . 6

3 FC 1-2025 8
3.1 A Quick Review of 2-adic

Expansions and Coefficients . 8
3.2 FC 1-2025 Encoding . 8
3.3 Warm-Up: FC-1-2025 Numbers . 10

4 The Processor 12
4.1 The Processor Register Cluster . 12
4.2 Nested-Clustered Design . 13
4.3 Cluster Load-Store

and Addressing . 13

5 Parallelization 16
5.1 Parallelization . 16
5.2 Parallelized Load-Store . 16
5.3 FC 2-2025 Encoding . 16
5.4 Parallelization and

Non-Archimedean Distance . 17
5.5 Max

(
∆hℓ

2

)
Parallelization . 19

5.6 Constraints on Optimization . 22

6 Further Prospects 23
6.1 Error Correction and

Fault Tolerance . 23
6.1.1 Error-Checking with (χ, π)-Payloads . 23
6.1.2 ∆µ

2 Trajectory-Defect Checks . 23
6.1.3 LSU Consensus . 23

6.2 Supercomputing . 24

Inventions No. 1, Version 2.5 1/25

INTRODUCING HENSEL

1 Introducing Hensel

1.1 A CPU Architecture for Q2

Introduced preliminarily in this report is the
Hensel CPU (ヘンゼル CPU), designed ac-
cording to a novel computing architecture
with the aspiration of replacing floating-point
arithmetic with exact arithmetic performed
in Q2 (i.e., 2-adic arithmetic). Here, ex-
act arithmetic denotes arithmetic which, al-
though subject to computational bounds
(e.g., constrained by a given bit-width), is
nonetheless performed on operands whose
representation in bits is unique. The Hensel
architecture is designed for arithmetic in Q2,
rather than R. In floating-point arithmetic,
"floating-point numbers" (i.e., elements of Q)
approximate elements of R with finite preci-
sion. It has been known among some com-
puter scientists since the 1970’s that p-adic
numbers (e.g., elements of Q2) – where, from
Ostrowski’s theorem, we know that Qp and R
are the only completions of Q – admit exact,
unique representations with finite encodings.
(Examples of precedents include the so-
called "Hensel codes" of Krishnamurthy et al.,
the work of Horspool-Hehner, and Doris’ sys-
tem for exact p-adic arithmetic in Magma.)

Unlike the above precedents, Hensel is an
architecture, rather than an algorithm or
software package. Thus, it is designed to
perform arithmetic in Q2 at the machine
level, where Q2 is distinct from all other Qp>2

in that the coefficients of 2-adic expan-
sions are ai ∈ {0, 1} and thus can be writ-
ten in bits. Descending to the architec-
tural level carries several prospective advan-
tages to CPU users. First, users can utilize
a CPU performing arithmetic in Q2 at the
machine level without any familiarity with
2-adic arithmetic; operands in Q2 can be
expressed – for instance, symbolically – in
user-recognizable form in higher-level pro-
gramming languages. Thus, unlike software
such as Magma, which offers exact arith-
metic to number theorists familiar withQp, the
Hensel CPU is designed to bring the accu-

racy and performance of exactness to gen-
eral users. Moreover, by developing a design
to realize exact arithmetic at an architectural
level, SciSci Research and its Future Comput-
ing group endeavor to confront the barriers
posed by floating-point to high-performance
computing (HPC), and help to realize an ex-
act HPC capability unhindered by tradeoffs
between performance, accuracy, and cost.

1.1.1 Defining Exactness

Although no computing system can over-
come the limitation of computing with fi-
nite resources over fields with cardinalities
of the continuum, computers can be de-
signed such that the operands over which
they compute are unique; such is the as-
piration of exactness pursued by SciSci Re-
search and Future Computing in designing
the Hensel CPU. Thus, the criterion of exact-
ness is not to be mistaken for the promise
of computability. One will ineluctably en-
counter examples of arithmetic over particu-
lar numbers that the Hensel CPU cannot per-
form within its bit-width (in which case one
will receive an error message, rather than an
approximation), but the architecture is de-
signed such that, when it can perform arith-
metic, it does so exactly. Furthermore, the ar-
chitecture, which is designed to favor scaling
towards supercomputing applications, is ad-
vanced with the aspiration of extending ex-
actness to the largest collection of operands
possible (e.g., with a large bit-width).
It should be noted that the Hensel CPU is
not entirely untethered from the question of
approximation insofar as its instructions and
operand encodings are developed with the
assistance of software such as Sage and
Magma, which return so-called "lazy" repre-
sentations of 2-adic numbers (i.e., up to a
specified precision). Nonetheless, arithmetic
performed by a Hensel CPU can nonethe-
less remain exact so long as its accepted
operands and instructions are restricted to
those with unique representations that can
be encoded within the CPU bit-width.

Inventions No. 1, Version 2.5 2/25

https://repository.ias.ac.in/28162/1/28162.pdf
https://www.cs.toronto.edu/~hehner/arith.pdf
https://www.sciencedirect.com/science/article/pii/S0747717120300869

A CPU Architecture for Q2 INTRODUCING HENSEL

1.1.2 The Question of Technical Risk

It should be emphasized that the novelty
of the Hensel architecture resides not in an
argument regarding the prospect of exact
arithmetic, a critique of floating-point, or an
observation that Qp can be used advanta-
geously for exact arithmetic; such arguments
can already be found in the literature. The
novel value proposition of the Hensel CPU is
found in its realization of 2-adic arithmetic at
the hardware level. Although a rough de-
sign for the architecture is presented here,
the technical risks of realizing novel hardware
(e.g., arithmetic logical units and processor
registers) remain outstanding. Nonetheless, it
should be emphasized that an architecture
for operands in Q2, whose expansion coef-
ficients can be encoded in bits, should be
compatible with extant MOSFET technology.
Such compatibility significantly de-risks the
Hensel CPU prospect relative to other com-
puting paradigms such as quantumcomput-
ing, in which case one must develop wholly
new electronics, such as transistors, for com-
puting with qubits. Thus, although the Hensel
CPU will involve new hardware, it doesn’t re-
quire a paradigmatic alternative to current
electronics and semiconductor technology;
it merely requires a new CPU that performs
arithmetic in Q2 with such technology.

1.1.3 The Prize of Exact Arithmetic

In floating-point arithmetic, real numbers
(i.e., elements of R) are approximated by
"floating-point numbers", which are rationals
(i.e., elements of Q). Reals are given dec-
imal representations, which are Cauchy se-
quences of rationals; in the case of floating-
point, these are truncated to be of finite
precision. Of course, given finite resources,
representations must be finite. The coding-
theoretic issue, in the case of R, pertains to
an analytic issue: real numbers don’t have
unique Cauchy sequences; they can only
be given up to equivalence. Moreover,R is in

fact a field of equivalence classes of Cauchy
sequences. As a consequence, the ac-
curacy limitations from which floating-point
arithmetic suffers can be seen as a conse-
quence of giving finite-precision representa-
tions of non-unique approximations of ele-
ments of R. For instance, suppose, given a
bit-width allowing 8 decimal places, one tries
to approximate 1

3 . One cannot distinguish
the approximation from 33333333

100000000 ; the repre-
sentation of 1

3 is non-unique.
In the case of Q2, every 2-adic number has a
unique 2-adic expansion, which is an infinite
series ∑∞

i=z ai2
i (where z ∈ Z and ai ∈ {0, 1}).

Writing the coefficients of these series, we ob-
tain unique binary representations. One can
compute the exact values of 2-adic expan-
sions of n ∈ Q2 using the convergent proper-
ties of infinite series with respect to the 2-adic
norm,

|n|2 = 2−v2(n) (1)
where v2 is the the 2-adic valuation
v2 : Q → Z ∪∞ (i.e., ∞ in the case of n = 0).
For instance, the following series for 1

3 ∈ Q2

convergences with respect to | |2:

1

3
=

1+ 2(1+ 22 + 24 + . . .)

= 1+
2

1− 22

(2)

as is the case for 1
5 ∈ Q2:

1

5
=

1+ 22(1+ 24 + 28 + . . .)+

23
(
1+ 24 + 28 + . . .

)
= 1+

22

1− 24

(3)

As discussed in this report, in the case of the
Hensel CPU, the crux of its value proposition is
computation with finite, efficient encodings
of 2-adic expansions in a manner that pre-
serves uniqueness and hence, exactness.

Inventions No. 1, Version 2.5 3/25

Report Scope INTRODUCING HENSEL

Figure 1: A plot of approximation errors for 1
3 (i.e., 1

3 − 3.3×10i

10i+1 , i ∈ {1, 3, . . . 49}), 1
11 (i.e.,

1
11 −

∑i
k=0 9×10k+1

10i+3 , i ∈ {2, 4, . . . 50}), and 41
333 (etc.) as one increases i.

1.2 Report Scope

With reports on the Virtual Hensel, load-store
architecture, and 2AALUs nowpublished, the
role of this original report on the Hensel CPU
can now be lent greater context. It is not
a reference on how the computing with the
Hensel architecture works. The Virtual Hensel
report was written to provide and explain
the Virtual Hensel as an elementary proof-
of-principle demonstration of exact compu-
tation with the Hensel architecture. As a
complement to the Virtual Hensel report, the
2AALU report and load-store report offer a
(relatively short) overview of how arithmetic
and load-store are performed at the level
of circuit design and combinational logic.
Nonetheless, these two reports, with great
regularity, refer back conceptually to this re-
port. Moreover, both theVirtual Hensel, load-
store, and 2AALU reports, very much pre-
occupied with the practical details of gen-
eral exact computing capability, seldom dis-
cuss matters to do with p-adic analysis or
Q2, which are very much central to this re-

port. Thus, this original report serves, and
is expected to serve for some time, as a
prerequisite text on the Hensel architecture
in a manner that guides the reader from
topics in pure mathematics such as 2-adic
expansions, Cauchy sequences, and non-
archimedean distance to features unique
to the Hensel architecture such as FC en-
codings, 2AALUs, nested carrier packaging,
χ-addresses, and distributed load-store. In
many instances, this report stops short of ex-
plaining how architectural features – imbri-
cating computer engineering strategies with
number-theoretic affordances – are realized
in practice as computing capabilities, in-
stead remarking that the reader can refer to
the Virtual Hensel, load-store, and 2AALU re-
ports.

The most rudimentary objective of this re-
port is to introduce how 2-adic numbers
are to be stored and operated upon in the
Hensel architecture. This requires a coding-
theoretic description of 2-adic operands, a
data-structural description of how they are

Inventions No. 1, Version 2.5 4/25

https://www.sci-sci.org/virtual-hensel
https://www.sci-sci.org/load-store
https://www.sci-sci.org/load-store
https://www.sci-sci.org/2aalus

NOVEL ARCHITECTURAL
AND CODING FEATURES

stored, and a logical-functional description
of how they are subject to arithmetic opera-
tions. In light of the novelty of aCPUarchitec-
ture designed for Q2, it is necessary to proffer
this description in a manner that begins with
p-adic analysis and proceeds to computer
engineering. With the intersection of these
disciplines relatively empty, it is necessary
to begin at a fundamental level, describing
operands and operations at the level of lists
and functions. Doing so will involve relatively
simple mathematics but a moderately so-
phisticated regime of notation for assigning
mathematical descriptions to the architec-
tural components of the CPU.
The Hensel CPU architecture is designed for
a load-store instruction-set architecture (ISA).
This first report is intended to preliminarily in-
troduce thearchitectural features, especially
Hensel processor components, whose load-
store roles are most integral. Thus, the report
will dedicate particular attention to process
registers and arithmetic logical units, as well
as the architectural properties with which
their design is endowed for 2-adic comput-
ing. This report intends to describe their de-
sign and function, as well as characterize
(and provide mathematical proofs of) prop-
erties anticipated to be of utility in HPC.
Looking ahead, beyond the rudimentary
presentation given here, more rarefied archi-
tectural descriptions – including ISA, microar-
chitecture, and implementation – will each
be given their own subsequent reports. This
report is the first of what will be a Hensel series
by SciSci Research and its Future Computing
group.

2 Novel Architectural
and Coding Features

This report introduces, in addition to sev-
eral components of the Hensel CPU archi-
tecture, standards used by SciSci and Future
Computing for representing 2-adic numbers
and instructions (comparable in purpose to
standards given for floating-point arithmetic,

such as IEEE 754-1985). These standards
are necessarily internal, rather than industrial;
that is to say, they are used internally by SciSci
and FutureComputing as a coding-theoretic
basis for architectural design specifications.

2.1 Encoding Standards
2.1.1 FC 1-2025 Operand Encoding
This report introduces FC 1-2025 (Future Com-
puting Standard 1-2025 for 2-adic Arith-
metic), a coding standard for 2-adic num-
bers. FC 1-2025 gives an efficient coding
of the coefficients of 2-adic expansions, and
thus provides an exact, non-approximate
encoding of 2-adic numbers (pace the R-
approximations found indelibly in floating-
point arithmetic). That is to say, all n ∈ Q2

whose FC 1-2025 encoding is within the bit-
width of the CPU can be subject to exact
arithmetic. (As discussed in Section 6.2, this
bit-width can be very large.)

2.1.2 FC 2-2025 Instruction Encoding
The second standard introduced in this re-
port is FC 2-2025, a standard for encoding
parallelizable arithmetic instructions for exe-
cuting operations on FC-1-2025-encoded 2-
adic numbers.

2.2 The Hensel Processor
Hensel’s arithmetic logical units (ALUs) and
processor registers (PRs) are designed ac-
cording to a novel, nested framework, ac-
cording to which a moderate number of
low-cost ALUs and PRs are assembled into
a cluster, with two key prospective advan-
tages (one affordedby nesting and the other
by clustering). First, the nested structure is
utilized for optimizing storage of FC-1-2025-
encoded operands in the PRs and execution
of FC-2-2025-encoded instructions by ALUs
due to the correspondence between this
nested structure and the relationships be-
tween 2-adic numbers. (For instance, note
that the distance between 2-adic numbers

Inventions No. 1, Version 2.5 5/25

The Hensel Processor
NOVEL ARCHITECTURAL
AND CODING FEATURES

is non-archimedean; rather than forming a
"number line" like the case of R, it forms a
nested structure.) Second, clustering allows
for parallelization of the optimal storage and
computing capabilities made available by
nested design.

2.2.1 2AALUs
2-adic arithmetic logical units (2AALUs) are
arithmetic logical units that perform arith-
metic in Q2 in parallelized fashion.

2.2.2 PR Cluster
Processor registers are also designed in a
cluster, ΞPR. Operands are stored in the pro-
cessor (and main memory) in FC 1-2025 for-
mat according to a triple-tree convention
discussed in this report. The individual PRs
in ΞPR, coordinating with the load-store unit
(LSU), are instructed by the control unit (CU)
to supply operands to ΞPR for parallelized ex-
ecution and to receive outputs.

Inventions No. 1, Version 2.5 6/25

The Hensel Processor
NOVEL ARCHITECTURAL
AND CODING FEATURES

Figure 2: Block diagram of the Hensel CPU, processor, control unit (CU), load-store unit (LSU),
and main memory, highlighting 2AALU and processor register cluster relations. (For simplicity of
presentation, in- and outgoing arrows with respect to the the CU are omitted.)

Inventions No. 1, Version 2.5 7/25

FC 1-2025

3 FC 1-2025
3.1 A Quick Review of 2-adic

Expansions and Coefficients
Recall from p-adic analysis that a 2-adic
number (n ∈ Q2) admits the following expan-
sion

n :=

∞∑
i=z

ai2
i, ai ∈ {0, 1}, z ∈ Z (4)

These unique expansions give exact sums
owing to the convergent properties of their
series with respect the 2-adic norm. For in-
stance, in the case of the following,

a(2i + 2i+k + 2i+2k + . . .) =
a

1− 2k
(5)

whereas, in the case of R, geometric series∑∞
k=0 akr

k only converge when |r| < 1, it is the
case that 2-adic expansions converge with
respect to |r|2 even when |r| ≥ 1. Properties
such as this, as well as the uniqueness of 2-
adic expansions, provide a basis for exact
arithmetic.
For purposes of introducing the FC 1-2025, we
turn our attention to the coefficients ai. Let’s
revisit the example of 1

3 ∈ Q2. The first 20 sum-
mands (including 0 summands) in its 2-adic
expansion are

1

3
= 1+ 2+ 23 + 25 + 27 + 29 + 211

+213 + 215 + 217 + 219 + . . .
(6)

(Here, the coefficient for 23, for instance, is 1,
whereas the coefficient for 24, for instance, is
0.) We then write the coefficients from right
to left, with an overbar over repeating coef-
ficients. In this case,

1

3
= 011.2 (7)

The first 20 summands in the expansion of 1
5

are
1

5
= 1+ 22 + 23 + 26 + 27 + 210 + 211

+214 + 215 + 218 + 219 + . . .
(8)

which can be abbreviated as
1

5
= 001101.2 (9)

Abbreviations of this kind are encoded ac-
cording to the FC 1-2025 standard as follows.

3.2 FC 1-2025 Encoding
We begin by taking the coefficients ai of a 2-
adic expansion sequence of a given n ∈ Q2,
which will be ordered from right to left. The
coefficient-list-form S of the sequence for the
2-adic expansion of n ∈ Q2 is as follows:

S(n) = (a∞, . . . , a1, a0, . . . , az+1, az) (10)

The FC 1-2025 encoding of a given n ∈ Q2

consists of finite sublists of S(n) which still give
a unique encoding:

FC(S(n)) := (⊥,RFC,⊥, LFC,⊥,TFC) (11)

RFC is the sublist of repeating coefficients in
the 2-adic expansion (e.g., 0011 for 1

5). Non-
empty RFC encodings always begin with a
1, and are of length ≥ 2. (For instance,
RFC(−1) := (1, 1).) Generally, for all sublists,
sequences of 0’s – e.g., for integers – are
treated as empty RFC encodings.) LFC is the
sublist of non-repeating coefficients to the
left of the "decimal" point (e.g., (0, 1) for the
case of 1

5), and are minimized so as to not
include repeated entries in RFC, but are writ-
ten so that RFC can begin with a 1. TFC is the
sublist of coefficients for summands with neg-
ative exponents, typically written to the right
of the "decimal point" (e.g., 1 in the case of 1

2 ,
which is written as .12). ⊥ is the "no operation"
symbol separating R, L, and T. For instance,

FC

(
S

(
1

3

))
:= (⊥, (0, 1) ,⊥, (1) ,⊥, ()) (12)

To take another example,

FC

(
S

(
1

5

))
:=

(⊥, (0, 0, 1, 1) ,⊥, (0, 1) ,⊥, ()) (13)

Another important example is as follows: by
convention, FC(S(0)) := (⊥,⊥, (0) ,⊥). Visual
illustrations of several FC 1-2025 encodings
are given in Figure 3 and Figure 4.

Inventions No. 1, Version 2.5 8/25

FC 1-2025 Encoding FC 1-2025

Figure 3: Array plot visualization (with color legend) of the FC 1-2025 Encoding of 5
3 .

Figure 4: Table of six 2-adic numbers, their 2-adic expansions, and FC 1-2025 encodings.

Inventions No. 1, Version 2.5 9/25

Warm-Up: FC-1-2025 Numbers FC 1-2025

3.3 Warm-Up: FC-1-2025 Numbers
As a kind of warm-up tutorial for tudying
finite 2-adic encodings, we’ll consider the
case of FC-1-2025-encoded 2-adic numbers,
a mock standard preceding the FC-3-2025
standard used by the Hensel CPU. One can
think of FC-1-2025 encoded 2-adic numbers
as given by a "triple-tree" data structure, i.e.,
three binary trees B1,B2,B3 whose parent
nodes are glued to a common vertex. With
respect to the FC 1-2025 format, RFC(−) data
are storedasB1, LFC(−) asB2, andTFC(−) asB3.
(T -form examples for FC

(
S
(

7
12

))
, FC

(
S
(

9
20

))
,

and FC
(
S
(
47
60

))
are shown in Figure 6.) Why

is it useful to start out thinking this way? Bi-
nary tree encodingassigns each ai inRFC, LFC,
or TFC to a vertex vi ∈ B∗

k , beginning with vBk
0 ,

with the coefficient assigned thereto indexed
as a0. Thus, one can think of RFC, LFC, or TFC as
each stored in a B∗

k as its own 2-adic number
(beginning to the left of the "decimal point"
at a0), though nevertheless together giving
an FC-1-2025 encoding as a triple-tree data-
structure. (Beginning each B∗

k encoding with
a0 eliminates the need to encode TFC using
negative indices, which is of consequence
for max (∆µ

2) parallelization, as discussed sub-
sequently.) This tree-structure warmup also
conveys the notion that the individual RFC,
LFC, or TFC blocks can be regarded as their
own number, and indeed, this is how FC-3-
2025 numbers are loaded to the processor
cluster (via a χ-ID system discussed exten-
sively in other reports).

Figure 5: Top: an example illustration of T . Bottom: the same illustration of T highlighting B∗
1 , B∗

2 ,
and B∗

3 . Note that these graph embeddings, for simplicity, collapse v⊥ onto vB2
0 .

Inventions No. 1, Version 2.5 10/25

Warm-Up: FC-1-2025 Numbers FC 1-2025

Figure 6: Triple-tree plots for three FC-1-2025-encoded 2-adic numbers. (Here, the embeddings
separate v⊥ from the vBi

0 .)

Inventions No. 1, Version 2.5 11/25

THE PROCESSOR

4 The Processor

4.1 The Processor Register Cluster
The Hensel CPU architecture features a novel
processor design, which is that of a cluster
composed of smaller units (i.e., small, low-
cost PRs), belonging to a processor register
cluster ΞPR with a nested structure.

Processor registers, being distributed
throughout the cluster, are loaded in dis-
tributed fashion by "loaders", or small units,
collectively comprising part of the load-
store-unit (LSU), that load operands to the
appropriate registers in the cluster. The clus-
ter is compartmentalized, with each com-
partment housing a loader. Loads to (or
reloads between) registers handled by load-
ers operating concert in the LSU circuit. Each
compartment is packaged in a carrier, with
carriers packaged in nested fashion (whilst
still being directly surface-mounted) in corre-
spondence with the topology of the LSU cir-
cuit (as described in the load-store report).
Loaders in the ciurcuit feed their outputs to
one another, with the carriers of the loaders
that they feed packaged within their car-
riers, recurrently, such that the carrier of a
given loader at level ℓ feeds its output to an
loader at level ℓ− 1 whose carrier is pack-
aged within its own carrier, as visualized in
Figure 8. The term "level" refers, technically,
to the level in the processor circuit tree in
which the loader is situated, with a carrier
for an loader at level ℓ− 1 packaged within
the carrier of the ℓ− 1 loader that is its par-
ent node in the circuit tree. (See the load-
store report for further details.) The ΞPR is a
collection of clustered processor registers,
CPR, whose containers are packaged in the
lowest-level cluster carriers, as shown in Fig-
ure 7. Thus, the overall cluster consists of
nested-packaged loader carriers, with pro-
cessor register carriers packaged at the in-
nermost level. Loaders positioned at differ-
ent levels can modify different ai, and, do-
ing so simultaneously at different levels, par-
allelize loader operations. This is achieved
via execution of FC-2-2025-encoded instruc-

tions, as discussed subsequently.

Operands are loaded to ΞPR in distributed
fashion. Given the T -form of a given
FC(S(n)), the individual B∗

k are loaded to dis-
tinct clustered processor registers in ΞPR. The
PR cluster consists of a master PR, MPR, as
well as clustered PRs, written as CPR. Together,
they comprise the ΞPR, which we write in no-
tation as a set of PRsΞPR :=

(⋃N
i=1 CPRi

)
∪MPR

(where N < 2B, with B being the architec-
ture bit-width). The individual B∗

k are loaded
to specific CPR according to individual en-
coding blocks called χ-IDs, discussed later in
this report (and to greater effect in the Vir-
tual Hensel report). A given χ-ID is loaded to
the CPR whose address matches the χ-ID en-
tries. MPR is responsible for reassembling ("re-
compounding") these individual blocks back
to a whole operand for storage purposes.
Each CPR is loaded via receipt of an "activa-
tion input", which we’ll term a π-sequence,
issued by MPR as prompted by the LSU. A
π-sequence both activates a given CPR and
encodes information about the kind of χ-
ID to be loaded (e.g., for a RFC, LFC, or TFC

block). Thus, to load an operand, the MPR

loads the χ-IDs of its constituent blocks to the
address-matching CPR, and tells the CPR what
kind of block is being loaded. Operands
can be reassembled ("recompounded") with
this information. The operands can also be
subject to arithmetic operations, resulting in
new χ-IDs, which are loaded to new CPR with
matching addresses, and recompounded
by the MPR to obtain the output.

The LSU, via its loaders, performs load-store
on operands stored according to paralleliz-
able instructions. Given some FC(S(q)) sub-
ject to anarithmetic operation µ yielding out-
put µ (FC(S(q))) these instructions amount to
modifying the FC(S(q)) address-matching χ-
ID in order to obtain the address-matching χ-
ID for the output FC(S(µ(q))). The instructions
guide the loaders at nest levels 2 ≤ ℓ ≤ L− 1
inmodifying the χ-ID entries in parallel, where
modifications of coefficients at lower i are
performed by Aℓ,j at lower ℓ (i.e., inner-
most in the nest-structure) and greater i by

Inventions No. 1, Version 2.5 12/25

https://www.sci-sci.org/load-store
https://www.sci-sci.org/load-store
https://www.sci-sci.org/virtual-hensel
https://www.sci-sci.org/virtual-hensel

Nested-Clustered Design THE PROCESSOR

Aℓ,j at greater ℓ (i.e., outermost in the nest-
structure).

4.2 Nested-Clustered Design
In the Hensel architecture, each cluster is to
be physically designed in nested form. From
an engineering perspective, one can build
carriers of differing sizes and mount them
to the printed circuit board with carriers at
lower levels packaged within carriers at lev-
els, as shown in Figure 7. The process register
carriers are, in turn, to be packaged inside
the lowest-level cluster carriers, and thus the
most deeply nested within the carrier pack-
aging structure, as shown in Figure 8. It is this
choice of inter-carrier packaging that gives
the nested structure of the processor. (See
the load-store report for further discussion.)
A cluster of nest depth L is designed so that,
proceeding from the innermost loader level
ℓ = 2 to level L − 1 (with level 1 storing the ΞPR

and level L storing theMPR/MLSU), there are
2L−ℓ loaders {ξℓ,2L−ℓ , . . . , ξℓ,1} at each level
ℓ. Each carrier at level ℓ will contain 2 level-
(ℓ− 1) loader carriers (with the exception of
the ξ2,j, whose carrier packages the the CPR
carriers) andwill be packagedalongside an-
other carrier by a carrier at level ℓ+ 1 (with
the exception of {ξL−1,1, ξL−1,2}, which are
packaged within the MPR carrier). We can
describe the nest structure of the register
cluster in terms set membership, where, as a
shorthand, ξℓ,j ≡ {}ℓ,j. With this shorthand, we
can write the nest structure as follows, begin-
ning at ℓ = 2 and moving outward by ℓ+ 1:

{}ℓ+1,j :=

{
{{{}ℓ,j} , {{}ℓ,j}} (ℓ− 1)|2
{{}ℓ,j, {}ℓ,j} (ℓ− 1) ∤ 2

,

{}2,j = {{}, {}} (14)

4.3 Cluster Load-Store
and Addressing

Operands are subject to load-store in dis-
tributed fashion, with the RFC(S(−)), LFC(S(−)),
or TFC(S(−)) blocks of an operand’s encod-
ing each loaded to a different CPR. As de-
scribed in greater detail in the Virtual Hensel
report, IDs, called χ-IDs, are generated from
these individual blocks, which are similar to
the blocks themselves, but subject to a few
coding tricks that permit a sizeable quan-
tity of blocks to be subject to load-store by
a relatively small number of processor regis-
ters. The address A assigned to a given CPR
is simply the χ-ID of the RFC(S(−)), LFC(S(−)),
or TFC(S(−)) encoding block load that it ac-
cepts. We denote a CPR with address A as
CPR (A). Thus, distributed load-store is a mat-
ter of ID-address matching (i.e., χ-A match-
ing).

A given CPR is loaded by activating it with
a π-sequence, which contains an encod-
ing that distinguishes the χ-ID by its block
type (i.e., RFC(S(−)), LFC(S(−)), or TFC(S(−))),
such that an operand, although being sub-
ject to load-store with its encoding broken
down ("decompounded") into its constituent
blocks, can nonetheless be recovered ("re-
compounded"). The LSU instructs the MPR to
load a CPR as follows:

λ : (χ, π) → CPR (Aχ
π) (15)

The λ mapping, as written above, is in fact
a simplified description of what is done in
practice by the loaders. See the Virtual
Hensel report for a finer description of loads,
and the load-store report for a finer descrip-
tion of re-loads, which are applied to output
operands.

Inventions No. 1, Version 2.5 13/25

https://www.sci-sci.org/load-store
https://www.sci-sci.org/virtual-hensel
https://www.sci-sci.org/virtual-hensel
https://www.sci-sci.org/virtual-hensel
https://www.sci-sci.org/virtual-hensel
https://www.sci-sci.org/load-store

Cluster Load-Store
and Addressing THE PROCESSOR

(a) Clustered View (b) Exploded view

Figure 7: Illustration of the nested structure in the register cluster.

Figure 8: Cluster distribution of CPR at the innermost level of the register cluster. (Note that the
number of nested layers in this example is greater than in Figure 7, simply for purposes of visual
variety.)

Inventions No. 1, Version 2.5 14/25

Cluster Load-Store
and Addressing THE PROCESSOR

Figure 9: Illustration of the correspondence between B∗
k -form tree structure and CPR cluster po-

sition. In this and other similar illustrations, the CPR are positioned at the "top", with layers "below"
being loader layers. Here, the top-most layers is nest-innermost in the cluster (i.e., at level ℓ = 1)
and the bottom-most layer is nest-outermost in the cluster (i.e., at level ℓ = L − 1).

Inventions No. 1, Version 2.5 15/25

PARALLELIZATION

5 Parallelization
5.1 Parallelization
2AALUs perform arithmetic in parallelized
fashion. For instance, in the case of dyadic
addition, operations on each pair of entries
in the two χ-IDs of the operands are done in
parallel. Arithmetic is thus reduced to a two
step process: parallelized arithmetic without
"extra digits" (i.e., from carrying), done in par-
allel, and a second step for adding extra
"digits" if necessary, which is also done in par-
allel. Finally, a computation of an FC-2-2025
instruction is performed in order to guide the
LSU in handling input and output operands
in the register cluster. The 2AALU report de-
scribes the above arithmetic procedures in
greater detail. We will now attend to load-
store.

5.2 Parallelized Load-Store
FC 2-2025 instructions guide the loading and
reloading of operands in the register clus-
ter. For a load, the instructions direct the LSU
loaders to load the relevant operand χ-ID to
the register with thematching address. In the
case of a reload, the FC-2-2025 instructions
tell the loaders, which entries in the address
need to be changed.

5.3 FC 2-2025 Encoding
Modification of entries in χ-IDs is noth-
ing more than mere bit-flipping (e.g.,
(1, 1, 1) → (1, 1, 0)). Indeed, as discussed in
the load-store report, at the circuit level,
modifications are executed in combina-
tional logic by a given loader by changing
the input value (i.e., 0 or 1) for the logic gates
at a particular level. At times, it is expedient
to elidediscussion of combinatorial logic and
instead denote loader operations in terms of
"hopcalculus", which, rather than explain the
circuit-level combinational logic underpin-
ning loader operations, describes the effect
of loader modifications, due to their effect
on a given χ-ID, on corresponding changes

in CPR to which the χ-ID will be loaded. In-
deed, a single loader modification can alter
a χ-ID such that its new address-matching
CPR is located in a notably different location
in the processor cluster. However, because
CPR are located at the ends of the circuit in a
specified manner (as discussed in the load-
store report), the change-in-address conse-
quent of loader modifications is predictable,
and very much related to the notion of 2-
adic distance. A change-in-address can be
thought of as a "hop" across the processor,
and the loader modification a "hop opera-
tion".
Each loader in the LSU circuit performs an op-
eration and passes its output τ to the next
loader downstream in the circuit tree. A
loader canpass a τ via two kinds of hops. Be-
cause each loader in the circuit tree (at level
ℓ > 2) has two children, i.e., {ξℓ,I, ξℓ,II} (and
because, accordingly, each loader carrier
at level ℓ + 1 packages two loader carriers
at level ℓ), it is the case that τ can be passed
according to one of two hops:

τhσℓ : Aℓ,I → Aℓ,II (16)

or
τhσℓ : Aℓ,II → Aℓ,I (17)

Hereafter, we will write them simply as hσℓ and
hσℓ , with τ implicit. (Alternatively, the loader
can perform no operation: a non-hop h⊥ℓ .)
The standard encoding for hop instructions,
FC 2-2025, is as follows:

(⊥,PR,⊥,PL,⊥,PT) (18)

wherePR is a sublist of instructions for RFC;PL,
for LFC; and PT, for TFC. The elements popu-
lating theseP(−) sublists are hσℓ and hσℓ (aswell
as h⊥ℓ) where hσℓ is encoded as (0, 1) and hσℓ is
encoded as (1, 0). (Additionally, a non-hop is
encoded as (0, 0).) Each instruction is in turn
separated by a ⊥.
FC 2-2025 encoding can be applied to in-
structions for addition, subtraction, multipli-
cation, or division operations whose inputs
and outputs are n ∈ Q2 within the allowed
bit-width, with the advantage of forgoing

Inventions No. 1, Version 2.5 16/25

https://www.sci-sci.org/2aalus
https://www.sci-sci.org/load-store
https://www.sci-sci.org/load-store

Parallelization and
Non-Archimedean Distance PARALLELIZATION

operations such as carrying in carry arith-
metic; the loader just perform modifications
according to stored instructions. In prac-
tice, the Hensel performs arithmetic on χ-IDs,
which are encoded according to the FC-3-
2025 standard, as introduced in the Virtual
Hensel report. In this report, for introduc-
tory purposes, we’ll consider arithmetic on
FC-1-2025 encoded operands. (We’ll write
"FC* 2-2025" to describe instructions on FC-1-
2025 encoded operands, since, in practice,
they are encoded for χ-IDs.) For instance,
recall that the FC 1-2025 encoding for 1

3 is
(⊥, 0, 1,⊥, 1,⊥). Adding 1

5 and 1
3 is encoded

in the following FC* 2-2025 instruction:

(⊥,⊥, (1, 0) ,⊥, (0, 1) ,⊥, (0, 1) ,⊥, (0, 0) ,⊥,⊥,

(0, 1) ,⊥, (1, 0) ,⊥, (1, 0) ,⊥, (0, 1) ,

,⊥,⊥) (19)

To be more precise, this instruction per-
forms a modification on FC

(
S
(
1
3

))
and re-

turns FC
(
S
(
µ(+, 15)

(
1
3

)))
= FC

(
S
(

8
15

))
.

However, for purposes of evaluating paral-
lelization performance, it is convenient to
write FC(*)-2-2025-encoded instructions in
parallelized form, or P-form, where the P-
form of a givenP(−) instruction list for a mod-
ification µ(FC(S(q))) is given in terms of hop
calculus. It is no more than a list H of h(−)

ℓ in-
structions, which are written from right to left
for loaders from levels ℓ = 2 to ℓ = L − 1:

P (µ(FC(S(q)))):= H

=
(
h(−)
m , . . . , h

(−)
2

) (20)

where L − 1 ≥ m. Thus, a parallel
computation performing a modifica-
tion µ (written P (Ξ (µ (−)))) of depth
D = Length (H) = m− 1, will execute (m− 1)-
many h

(−)
ℓ operations. When χ-modification

is performed for RFC, LFC, or TFC, each is
treated as a separate number and, each
having its own P(−), has its own P-form, with
χ entries beginning at a0 and operations be-
ginning at h(−)

2 .

5.4 Parallelization and
Non-Archimedean Distance

Hensel’s nested structure is designed to op-
timally store, and efficiently compute with,
numbers in Q2 in a manner commensurate
with 2-adic arithmetic. For instance, the
Hensel processor efficiently maximizes 2-adic
output-operand distance over minimal oper-
ations because its nested structure is com-
mensurate with 2-adic distance, which, un-
like the archimedean case of R, which is
givenwith respect to a number line, is instead
non-archimedean and gives a nested struc-
ture; the PR cluster is designed according to
this structure.
Given the nested structure of the cluster,
a hop operation affects, at level ℓ = 1, the
board location of the output-ID-matching
PR. Change-in-location is more distal when
hops are performed at higher ℓ than at lower
ℓ. Whereas at lower ℓ, hop operations can
be performed all the while remaining nested
within the same loader packaging at higher
ℓ, hops at higher ℓ in turn also affect all lower
ℓ, due to nested packaging. Thus, one might
suppose that the greater ℓ is, the greater
the effect of a hop operation on the out-
put. This would be rather inefficient, as it
would imply that clearing greater arithmetic
distances require π-sequence passing over
greater board distances. However, with re-
spect to 2-adic distance, one finds the oppo-
site to be the case: the lower-ℓ hops have the
greatest affect on the output. This is a con-
sequence of triple-tree data-structure and
nested-clustered design.
Recall the 2-adic distancebetween p, q ∈ Q2:

|q− p|2 = 2−v2(q−p) (21)

where v2 is the 2-adic valuation. Given an
operand q and output µ(q), we’ll denote the
2-adic output-operand distance as follows:

∆µ
2 (q) := |µ(q)− q|2 (22)

Let’s consider, in the parallelized case, the re-
lationship between ∆H

2 (−) =
∑L−1

ℓ ∆
h
(−)
ℓ

2 (−)

Inventions No. 1, Version 2.5 17/25

https://www.sci-sci.org/virtual-hensel
https://www.sci-sci.org/virtual-hensel

Parallelization and
Non-Archimedean Distance PARALLELIZATION

and D (H), the parallelization depth. No-
tably, greater D (H), requiring h

(−)
ℓ at ever-

greater ℓ, probes smaller 2-adic distances per
h
(−)
ℓ operation, or to be more precise:

max

(
∆

h
(−)
ℓ

2 (FC (S (q)))

)
∝ 1

D (H)
(23)

Thus, for greater D (H), the upper bound on
∆

h
(−)
ℓ

2 decreases with each additional level.
For instance, modification of a0 has the
greatest effect on ∆µ

2 . Consider the case
of q = 1 and µ := (+, 1). In this case,
∆

(+,1)
2 (1) = 20 = 1. This only involves mod-

ification of a0 (thus, D = 1). Or, consider
the case of a1-modification: take the case
where q = 1 and µ := (+, 2). In this case,
∆

(+,2)
2 (1) = 2

−1

= 1
2 , a smaller distance. Of

course, modification of a0 can affect smaller

distances too. For instance, if q = 32 and
µ := (+, 1), then ∆

(+,32)
2 (1) = 2−5. However,

there is no modification of ai>1 that gives a
distance ∆

h
(−)
ℓ

2 ≥ 20.
At first glance, the above statement may
seem surprising, for, in the usual case of ai-
modification, one can indeed obtain values
∆µ

2 > 1 when negative exponents appear in
the 2-adic expansion of the operand or out-
put, that is, coefficients to the right of the
"decimal point". However, P-form encod-
ings give instructions for T -form FC-1-2025
operands, which are of B∗

k structure. TFC en-
tries, which do correspond to negative expo-
nents in a typical 2-adic expansion, are en-
coded in B∗

3 beginning with a0 and thus non-
negative. T -form abolishes index-negativity
and thereby bounds output-operand dis-
tance to 0 ≤ ∆µ

2 ≤ 1.

Figure 10: Table highlighting, per level, the loaders a hop can reach (in light blue) and the PRs
they can reach (in dark blue).

Inventions No. 1, Version 2.5 18/25

Max
(
∆hℓ

2

)
Parallelization PARALLELIZATION

5.5 Max
(
∆hℓ

2

)
Parallelization

If we look at ∆H
2 per level ℓ, i.e., per ∆h

(−)
ℓ

2 ,
we find that the inner-to-outer level execu-
tion of right-to-left-indexed P-form instruc-
tions necessarily maximizes, relative to depth
D, the distance ∆

h
(−)
2

2 that can be cleared
per level ℓ, as shown in Figure 11. As
a consequence, given some A2,i perform-
ing a h

(−)
2 hop, max

(
∆

h
(−)
2

2

)
is greater than

max

(
∆

h
(−)
i>2

2

)
.

Such is advantageous for parallelization, as it
means that Aℓ,j are maximally level-efficient,
per ℓ (and with respect to D), in bringing the
operand to the output value. Thus, the D
values for parallel computation can readily
be minimized by following the principle of
D-minimization through ∆

h
(−)
ℓ

2 -maximization,
where D-minimization necessarily minimizes
the number of loaders involved, and is thus
a benchmark for parallelization efficiency.
The relationship between nest level execu-
tion of FC 2-2025-encoded P instructions is
illustrated, for some rudimentary cases, in Fig-
ure 12.

Figure 11: Plot showing possible ∆
h
(−)
ℓ

2 values per ℓ level, where 2 ≤ ℓ ≤ 14.

Inventions No. 1, Version 2.5 19/25

Max
(
∆hℓ

2

)
Parallelization PARALLELIZATION

Figure 12: Elementary visualizations of FC*-2-2025-encoded instructions.

Inventions No. 1, Version 2.5 20/25

Max
(
∆hℓ

2

)
Parallelization PARALLELIZATION

Figure 13: A P-form "instruction table", where the columns are CPR whose χ-addresses are the
T -form FC 1-2025 operand inputs {0, 1, 2, 3, 4, 5, 6, 7} ∈ Q2, and the rows are the same CPR whose
χ-addresses are taken as outputs. Shown in the table are the h

(−)
ℓ operations in the instructions

that return each output from each input.

Inventions No. 1, Version 2.5 21/25

Constraints on Optimization PARALLELIZATION

5.6 Constraints on Optimization

Although parallelization lends the efficiency
of simultaneity to computation, and the
max (∆µ

2) property makes operations at each
nest level economical, there must necessar-
ily exist constraints on parallelization optimal-
ity, which should be articulated so as tomea-
sure performance relative thereto. The key
constraint, of course, is a depth constraint:
certain computations will require many par-
allel operations. Depth costs are incurred
when operands and outputs are many hops
removed from one another in ΞPR, which will
ineluctably require parallelized computation
involving several loaders to effectuate hops.

As an example, let’s consider possible val-
ues of q, namely {0, 1, 2, 3, 4, 5, 6, 7} ∈ Q2. Let’s
also consider 8 values for µ(q), which will also
be {0, 1, 2, 3, 4, 5, 6, 7}. Figure 13 provides a
table showing the H needed to obtain a
given T -form of P (Ξ (FC (S (µ (q))))) from the
T -form of FC(S(q)). The following 8× 8 matrix

gives the D (H) values for each:

M =



0 1 1 2 1 2 2 3
1 0 2 1 2 1 3 2
1 2 0 1 2 3 1 2
2 1 1 0 3 2 2 1
1 2 2 3 0 1 1 2
2 1 3 2 1 0 2 1
2 3 1 2 1 2 0 1
3 2 2 1 2 1 1 0


(24)

Note that entries in M near the left-to-right
diagonal are small, whereas the opposite is
true for the right-to-left diagonal; in the latter
case, the operands and outputs are stored
in CPR that are hop-distal from one another
in the cluster. The values near these diag-
onals are sufficiently disparate such that if
one interpolates a surface X from the ma-
trix (i.e., with coordinates (i = q, j = µ(q),Mi,j)),
the gap between high- and low-D (H) along
the diagonals gives a hole in the surface (see
Figure 14). Heuristically, one can think of this
"topological invariant" in the interpolated sur-
face as exhibiting the difference inD (H) be-
tween hop-proximal and hop-distal CPR.

Figure 14: A 3D plot of X seen from two viewing angles.

Inventions No. 1, Version 2.5 22/25

FURTHER PROSPECTS

6 Further Prospects
6.1 Error Correction and

Fault Tolerance
With the prospective advantage of Hensel
CPU architecture being exact arithmetic, a
design that ensures checks against com-
putational error, and is resilient to com-
putational faults, is of paramount im-
portance in delivering arithmetic perfor-
mance. Sketched cursorily are some Hensel-
architecture-compatible mechanisms for
delivering error correction and fault toler-
ance. These sketches are all inefficient but
give indications of the kind of mechanisms
that can be developed.

6.1.1 Error-Checking with (χ, π)-Payloads
Error detection for operand encoding can
be performed by taking advantage of the χ-
ID system. Suppose a given encoding block
is mis-transmitted (e.g., between a CPR and
an A, between the A and MPR , etc.). Be-
cause the process begins by sending the
appropriate χ from MPR to the appropriate
CPR , one could readily implement a check
for operand-transmission consistency during

LSU operations by requiring that the load-
ers involved continue to transmit χ in their
payloads by requiring that τ payloads be-
come (χ, τ)-payloads, in which case FC-1-
2025-form errors could be easily detected
and located.

6.1.2 ∆µ
2 Trajectory-Defect Checks

Because loaders at a given nest level ℓ can
perform computations that affect ∆µ

2 by a
certain 2-adic distance, an error in computa-
tion or transmission at any given level ℓwill be
evident if it effectuates a change in µ(q) be-
yond the ∆µ

2 range permissible for that level
ℓ. Figure 15 gives an illustration.

6.1.3 LSU Consensus

One could also, albeit at the cost of effi-
ciency, implement a distributed-consensus
framework within the processor itself, namely
by employing an odd number of redundant
clusters whose outputs are sent toMPR upon
clearing a vote. Note that such a process
does not jeopardize parallelization, for the re-
dundant LSUs could compute in parallel with
respect to one another.

Figure 15: Illustration of ∆µ
2 trajectory-defect detection.

Inventions No. 1, Version 2.5 23/25

Supercomputing FURTHER PROSPECTS

6.2 Supercomputing
The register cluster is designed so that it can
implement multiple F-2-2025 encoded H in-
struction lists simultaneously. That is to say, the
H operations are executed in parallel and,
what is more, multiple H instruction lists can
themselves be executed in parallel. Given
an instruction superlist

Π := (Hi) (25)

the upper bound on Length (Π), the number
of Hi that can be executed simultaneously,
is comparable to the number of loaders in
the cluster (since, in the most efficient case,
each loader is performing an operation at

any given time). Because in the case of
FC-3-2025 encodings each operand is bro-
ken into blocks are loaded to four registers,
the number of permissible parallel operations
would be

max(Π) =
2L−2!

4!(2L−2 − 4)!
(26)

Thus, a processor cluster with a depth of
L − 2 = 15 would be able to handle as
many as 1019 operands at once. (Figure
16 shows a cluster of depth slightly lower.)
One would then just need enough 2AALUs.
L − 2 = 17 should cross the zetaXOPS perfor-
mance threshold, as shown in Figure 17.

Figure 16: A register cluster of level depth L = 13.

Inventions No. 1, Version 2.5 24/25

Supercomputing FURTHER PROSPECTS

Figure 17: Best-case prediction of the cluster depth required for exaXOPS and zetaXOPS com-
puting performance. (Here, "Depth" refers to the L (minus 2 value.)

Inventions No. 1, Version 2.5 25/25

Published by SciSci Press

サ
イ
サ
イ
・
リ
サ
⃝
チ

S
ciS

ci R
esearch

	Introducing Hensel
	A CPU Architecture for Q2
	Defining Exactness
	The Question of Technical Risk
	The Prize of Exact Arithmetic

	Report Scope

	Novel Architectural and Coding Features
	Encoding Standards
	FC 1-2025 Operand Encoding
	FC 2-2025 Instruction Encoding

	The Hensel Processor
	2AALUs
	PR Cluster

	FC 1-2025
	A Quick Review of 2-adic Expansions and Coefficients
	FC 1-2025 Encoding
	Warm-Up: FC-1-2025 Numbers

	The Processor
	The Processor Register Cluster
	Nested-Clustered Design
	Cluster Load-Store and Addressing

	Parallelization
	Parallelization
	Parallelized Load-Store
	FC 2-2025 Encoding
	Parallelization and Non-Archimedean Distance
	Max (h2) Parallelization
	Constraints on Optimization

	Further Prospects
	Error Correction and Fault Tolerance
	Error-Checking with (,)-Payloads
	2 Trajectory-Defect Checks
	LSU Consensus

	Supercomputing

