‘ Future Computing ‘

D 3
) T

@

Y

I

3¢G 0l

/1s

ex|J /010" 10S—10S

=/

)

0)
O
(©X
O
~
N
0]
~J
(@)
(@)

G 'ON SUOIJUBAU|

TOHT ~
metY =TT F v

RIXA (U 2 1)
RISC Instruction Set Architecture for
Exact Computing

James Douglas Boyd

SciSci Research, Inc. + Future Computing

SciSci Research, Inc.
Boulder, Colorado, United States
WWW.SCi—SCi.org

Copyright © 2025 by SciSci Research, Inc. All Rights Reserved.
Citation Format:

Boyd, J.D. (2025). RIXA (1) 2 %): RISC Instruction Set Architecture for Exact
Computing. SciSci Inventions, 1(5). DOI: 10.5281/zenodo.17284766

CONTENTS CONTENTS

Contents

1 The RIXA Instruction Set

Architecture
1.1 PFC-3-2025 and FC-3-2025

Encoding Formats
1.2 LOAD: ARIXA and MRIXA o
1.3 ADD, ADDC, ANAREG . .+« v v v e e e

4 RELOAD: ARIXA and MRIXA

1.5 Multiplication:

ARIXA and MRIXA . . . o
1.6 Numerators and Denominators:

ARIXA and MRIXA o
1.7 ReVIEW . .

SciSci Inventions No. 5, Version 1.1

1/5

1 The RIXA Instruction Set
Architecture

The Hensel Instruction Set Architecture (ISA) is
a Reduced Instruction Set Computer (RISC)
ISA. We'll call it the RISC ISA for EXact Arith-
metic, or RIXA. In accordance with RISC phi-
losophy, RIXA is designed for the Hensel fo ex-
ecute many simple instructions, preferring in-
struction quantity to algorithmic complexity.
Thus, complexity is outsourced to the com-
piler, which issues lists of simple instructions for
the Hensel to execute. We'll write the assem-
bly language RIXA commands as ARIXA and
machine code instructions as MRIXA.

Under RIXA, FC-3-2025 operands are of a
fixed length, with the length depending on
the CPU. In the case of, for instance, the Vir-
tual Hensel |, whose processor register clus-
ter has 25 registers, and whose addresses can
match against x°-IDs of length 5, the FC-3-
2025 encodings will be of length 20 (since
there are four blocks, each loaded to its own
register.) In general, for a Hensel CPU of clus-
ter depth £ — 2 = 2%, the RIXA length for FC-
3-2025 encodings will be 4 x k.

As discussed in the report on 2-adic arith-
metic units (2AALUs), each arithmetic oper-
ation terminates with the computation of an
FC-2-2025 code, which, as discussed in the
Virtual Hensel and load-store reports, guides
the load-store unit (LSU) in loading the out-
put to the address-matching processor regis-
ter. One need not issue a command for stor-
ing an operand in a particular register; this
is done automatically. One the other hand,
after loads are executed, their FC-2-2025 in-
structions are placed in a queue, and re-
frieval of a loaded operand requires speci-
fication of the queue position.

The following is but an introductory tutorial
of use of elementary ARIXA commands and
MRIXA instructions, as shown via examples.

SciSci Inventions No. 5, Version 1.1

THE RIXA INSTRUCTION SET
ARCHITECTURE

1.1 PFC-3-2025 and FC-3-2025
Encoding Formats

Recall that an FC-3-2025 encoding consists
of four blocks: Nec, Rec, Lec, and Tgc. The
last, Tec, gives the 2-adic expansion entries
fo the right of the "decimal”. Lgc gives non-
repeating the 2-adic expansion entries to the
left. Rgc gives repeating 2-adic expansion
entries to the leftf. The Ngc block encodes
the length of the repeating sequence in Rec.
The first three, taken fogether, give a pre-
FC-3-2025 encoding (i.e., PFC-3-2025 format
encoding). The Hensel CPU performs arith-
metic on PFC-3-2025-encoded operands be-
fore converting them to FC-3-2025 format for
register loading. Conversion to FC-3-2025
also involves some efficient coding tricks:
Nec, Rrc. and Lgc are given within their en-
fries in reverse order. Thus, in the case of
LOAD commands, the Hensel uses the FC-
3-2025 encoding, and for arithmetic oper-
ations, the Hensel uses the PFC-3-2025 en-
coding. One always begins with PFC-3-2025,
however: FC-3-2025 conversion is performed
automatically before loads, as discussed in
the 2AALU report,

1.2 L0AD: ARIXA and MRIXA

Suppose we want to compute 2 — % to ob-
tain g With ARIXA, loads are programmed
as follows

LOAD —1/3

One does not specify the register, as there is
a unique collection of registers to which, un-
der x-20 matching, the x°-IDs corresponding
to the Nec, Rec. Lec, and Trc blocks of FC (—%)
are loaded, as determined by FC-2-2025 in-
structions. The LOAD command automatically
triggers the loaders in the LSU circuit to load
the four FC-3-2025 blocks to their respective
registers in the processor cluster. In this case,
the PFC-3-2025 encoding of —% is:

00001 00001 00000

2/5

ADD, ADDC, and REG

The MRIXA opcode for LOAD is 10000. So, the
overall MRIXA instruction for loading —% is

10000 00001 00001 00000

Prior to loading, the PFC-3-2025 encoding will
then be converted to the following FC-3-2025
form for —3:

00010 10000 10000 00000

1.3 ADD, ADDC, and REG

Now, let’s add 2. One need only give the
opcode and the two operands, giving first
the operand already loaded to the proces-
sor cluster:
ADDC REG1 2

(ADDC is a "cluster add", or an addition oper-
ation using an operand loaded to the pro-
cessor cluster.) The MRIXA opcode for ADD
is 01000. Thus, the MRIXA command for
PFC(—%) +PFC(2) s

01000
00001 00001 00000
00000 00010 00000

However, this looks ugly. What RIXA does
instead is add 2 to an operand already
loaded. (In this case, —% is already loaded).
The MRIXA opcode for ADDC with REG1 is 01100.
Thus, the MIXRA instruction is:

01100 00000 00010 00000

The 2AALU will compute the following result
(still in PFC-3-2025 form),

00001 00011 00000
automatically convert it to FC-3-2025 format,
01000 10000 11000 00000

and also automatically compute the FC-2-
2025 instruction for loading

00000 00000 01000 00000

Intuitively, in the 2-adic case, adding 2 should
require flipping only one bit.

SciSci Inventions No. 5, Version 1.1

THE RIXA INSTRUCTION SET
ARCHITECTURE

1.4 RELOAD: ARIXA and MRIXA

Next, let’s add 2 to —3, and then add 2 again.
The procedure is as follows. We load —31
and cluster add 2 fo the loaded —%. Then,
we reload the output of that computation
to REG1. Finally, we cluster add 2 to the new
REG1-loaded operand. In ARIXA, it is written
as follows:

LOAD —1/3
RELOAD ADDC REG1 2
ADDC REG1 2

The MRIXA command for RELOAD ADDC REG1 is
11100. Thus, in MRIXA, the instructions are
written as follows:

10000 00001 00001 00000

01100 00000 00010 00000

In the case of multiple instructions, the com-
piler sends them to an instruction memory
unit, which are then sent via a parallel in-
struction bus to the 2AALU one at a time. (In
this respect, the Hensel CPU architecture re-
sembles the Harvard architecture.)

Each time a LOAD or RELOAD is executed, the
FC-2-2025 instruction for the (re)load is stored
in a queue in the instruction memory unit.
Thus, REG1 refers to the FC-2-2025 instruction
first in the queue, and so on.

1.5 Multiplication:
ARIXA and MRIXA

Multiplication and division operations, when
given to the compiler, are converted to AR-
IXA as lists of RELOAD ADDC commands. For in-
stance, the ARIXA command for —% x 4 is:

LOAD —1/3

RELOAD ADDC REG1 — 1/3
RELOAD ADDC REG1 — 1/3
ADDC REG1 — 1/3

3/5

Numerators and Denominaftors:
ARIXA and MRIXA

In MRIXA, the list of instructions is given as fol-
lows:

10000 00001 00001 00000

01100 00001 00001 00000

Just as, in the case of addition, subtraction is
freated merely as a matter of adding a neg-
ative number, so too is division simply tfreated
as multiplication by a number with a non-1
denominator. —1 x 4 is the same as ;. Thus,
there isno SUBTRACT, MULTIPLY, Or DIVIDE COM-
mand in ARIXA; when commands for such
operations are given to the compiler, they
are converted into a list of instructions involv-
ing only addition. Next, let's consider the
case where the numerators and denomina-
tors are more complicated.

1.6 Numerators and Denominators:
ARIXA and MRIXA

Next, let’s consider a case in which the
numerators and denominators of both
operands are nontrivial, such as & x 2. In
this case, the Hensel CPU performs multipli-
cation on the numerator and denominator
separately and sends the result of each to
memory, and then retrieves from memory
the PFC-3-2025 encoding of the operand
with the output numerator and denominao-
for. Thus, in keeping with the RISC philosophy,
the entire computation is still no more than a
series of addition operations.

The command for sending the numerator re-
sult to memory is MEMN, and, for the denom-
inator, MEMD. The command LOAD MEM loads
the operand in memory with the MEMN numer-
ator and MEMD denominator. In ARIXA, the list
of commands is given as follows:

SciSci Inventions No. 5, Version 1.1

THE RIXA INSTRUCTION SET
ARCHITECTURE

LOAD 3

RELOAD ADDC REG1 3
RELOAD ADDC REG1 3
RELOAD ADDC REG1 3
RELOAD ADDC REG1 3
RELOAD ADDC REG1 3
RELOAD ADDC REG1 3
MEMN REG1

LOAD 15

RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
RELOAD ADDC REG2 15
MEMD REG2

LOAD MEM

The MRIXA command for MEMN is 00100. The
command for MEMD is 00010. In both cases,
one need only include these commands
and specify the register. The LOAD MEM com-
mand is 10001. Thus, the MRIXA commands
are as follows:

4/5

Review

10000 00000 00011 00000

SciSci Inventions No. 5, Version 1.1

THE RIXA INSTRUCTION SET
ARCHITECTURE

11010 00000 01111 00000

10001 00000 00000 00000

1.7 Review

Given below are the ARIXA and MRIXA com-
mands considered herein:

LOAD | 10000

ADD | 01000

ADDC REG1 | 01100

ADDC REG2 | 01010
RELOAD ADDC REG1 | 11100
RELOAD ADDC REG2 | 11010
LOAD MEM | 10001

Looking ahead, it may be the case that a
second opcode block is necessary in order
to allow for REG commands beyond, say, REG1
and REG2. Given the distributed nature of
Hensel load-store, one could in principle al-
low for REG queuing of FC-2-2025 instructions
to be rather long.

5/5

SciSci Research
PNYPY D —Y%

Published by SciSci Press

	The RIXA Instruction Set Architecture
	PFC-3-2025 and FC-3-2025 Encoding Formats
	LOAD: ARIXA and MRIXA
	ADD, ADDC, and REG
	RELOAD: ARIXA and MRIXA
	Multiplication: ARIXA and MRIXA
	Numerators and Denominators: ARIXA and MRIXA
	Review

