
 SciSci Research, Inc. + Future Computing

Inventio
ns N

o
. 5

sci-
sci.org/rixa

D
O

I: 10
.5

2
8
1/zenodo.172

8
4
76

6

RIXA (リクサ)
RISC Instruction Set Architecture for
Exact Computing

James Douglas Boyd

RIXA
エグザクト
命令セットアーキテクチャ

SciSci Research, Inc.
Boulder, Colorado, United States
www.sci-sci.org

Copyright © 2025 by SciSci Research, Inc. All Rights Reserved.

Citation Format:

Boyd, J.D. (2025). RIXA (リクサ): RISC Instruction Set Architecture for Exact
Computing. SciSci Inventions, 1(5). DOI: 10.5281/zenodo.17284766

CONTENTS CONTENTS

Contents
1 The RIXA Instruction Set

Architecture 2
1.1 PFC-3-2025 and FC-3-2025

Encoding Formats . 2
1.2 LOAD: ARIXA and MRIXA . 2
1.3 ADD, ADDC, and REG . 3
1.4 RELOAD: ARIXA and MRIXA . 3
1.5 Multiplication:

ARIXA and MRIXA . 3
1.6 Numerators and Denominators:

ARIXA and MRIXA . 4
1.7 Review . 5

SciSci Inventions No. 5, Version 1.1 1/5

THE RIXA INSTRUCTION SET
ARCHITECTURE

1 The RIXA Instruction Set
Architecture

The Hensel Instruction Set Architecture (ISA) is
a Reduced Instruction Set Computer (RISC)
ISA. We’ll call it the RISC ISA for EXact Arith-
metic, or RIXA. In accordance with RISC phi-
losophy, RIXA is designed for the Hensel to ex-
ecute many simple instructions, preferring in-
struction quantity to algorithmic complexity.
Thus, complexity is outsourced to the com-
piler, which issues lists of simple instructions for
the Hensel to execute. We’ll write the assem-
bly language RIXA commands as ARIXA and
machine code instructions as MRIXA.

Under RIXA, FC-3-2025 operands are of a
fixed length, with the length depending on
the CPU. In the case of, for instance, the Vir-
tual Hensel I, whose processor register clus-
ter has 25 registers, andwhose addresses can
match against χd-IDs of length 5, the FC-3-
2025 encodings will be of length 20 (since
there are four blocks, each loaded to its own
register.) In general, for a Hensel CPU of clus-
ter depth L − 2 = 2k, the RIXA length for FC-
3-2025 encodings will be 4× k.

As discussed in the report on 2-adic arith-
metic units (2AALUs), each arithmetic oper-
ation terminates with the computation of an
FC-2-2025 code, which, as discussed in the
Virtual Hensel and load-store reports, guides
the load-store unit (LSU) in loading the out-
put to the address-matching processor regis-
ter. One need not issue a command for stor-
ing an operand in a particular register; this
is done automatically. One the other hand,
after loads are executed, their FC-2-2025 in-
structions are placed in a queue, and re-
trieval of a loaded operand requires speci-
fication of the queue position.

The following is but an introductory tutorial
of use of elementary ARIXA commands and
MRIXA instructions, as shown via examples.

1.1 PFC-3-2025 and FC-3-2025
Encoding Formats

Recall that an FC-3-2025 encoding consists
of four blocks: NFC, RFC, LFC, and TFC. The
last, TFC, gives the 2-adic expansion entries
to the right of the "decimal". LFC gives non-
repeating the 2-adic expansion entries to the
left. RFC gives repeating 2-adic expansion
entries to the left. The NFC block encodes
the length of the repeating sequence in RFC.
The first three, taken together, give a pre-
FC-3-2025 encoding (i.e., PFC-3-2025 format
encoding). The Hensel CPU performs arith-
metic on PFC-3-2025-encoded operands be-
fore converting them to FC-3-2025 format for
register loading. Conversion to FC-3-2025
also involves some efficient coding tricks:
NFC, RFC, and LFC are given within their en-
tries in reverse order. Thus, in the case of
LOAD commands, the Hensel uses the FC-
3-2025 encoding, and for arithmetic oper-
ations, the Hensel uses the PFC-3-2025 en-
coding. One always begins with PFC-3-2025,
however: FC-3-2025 conversion is performed
automatically before loads, as discussed in
the 2AALU report.

1.2 LOAD: ARIXA and MRIXA

Suppose we want to compute 2− 1
3 to ob-

tain 5
3 . With ARIXA, loads are programmed

as follows

LOAD − 1/3

One does not specify the register, as there is
a unique collection of registers to which, un-
der χ-A matching, the χd-IDs corresponding
to the NFC, RFC, LFC, and TFC blocks of FC

(
− 1

3

)
are loaded, as determined by FC-2-2025 in-
structions. The LOAD commandautomatically
triggers the loaders in the LSU circuit to load
the four FC-3-2025 blocks to their respective
registers in the processor cluster. In this case,
the PFC-3-2025 encoding of − 1

3 is:

00001 00001 00000

SciSci Inventions No. 5, Version 1.1 2/5

ADD, ADDC, and REG
THE RIXA INSTRUCTION SET

ARCHITECTURE

The MRIXA opcode for LOAD is 10000. So, the
overall MRIXA instruction for loading − 1

3 is

10000 00001 00001 00000

Prior to loading, the PFC-3-2025 encodingwill
then beconverted to the following FC-3-2025
form for − 1

3 :

00010 10000 10000 00000

1.3 ADD, ADDC, and REG

Now, let’s add 2. One need only give the
opcode and the two operands, giving first
the operand already loaded to the proces-
sor cluster:

ADDC REG1 2

(ADDC is a "cluster add", or an addition oper-
ation using an operand loaded to the pro-
cessor cluster.) The MRIXA opcode for ADD
is 01000. Thus, the MRIXA command for
PFC

(
− 1

3

)
+ PFC(2) is

01000

00001 00001 00000

00000 00010 00000

However, this looks ugly. What RIXA does
instead is add 2 to an operand already
loaded. (In this case, − 1

3 is already loaded).
TheMRIXA opcode for ADDCwith REG1 is 01100.
Thus, the MIXRA instruction is:

01100 00000 00010 00000

The 2AALU will compute the following result
(still in PFC-3-2025 form),

00001 00011 00000

automatically convert it to FC-3-2025 format,

01000 10000 11000 00000

and also automatically compute the FC-2-
2025 instruction for loading

00000 00000 01000 00000

Intuitively, in the 2-adic case, adding 2 should
require flipping only one bit.

1.4 RELOAD: ARIXA and MRIXA
Next, let’s add 2 to− 1

3 , and thenadd 2again.
The procedure is as follows. We load − 1

3
and cluster add 2 to the loaded − 1

3 . Then,
we reload the output of that computation
to REG1. Finally, we cluster add 2 to the new
REG1-loaded operand. In ARIXA, it is written
as follows:

LOAD − 1/3

RELOAD ADDC REG1 2

ADDC REG1 2

The MRIXA command for RELOAD ADDC REG1 is
11100. Thus, in MRIXA, the instructions are
written as follows:

10000 00001 00001 00000

−−−−−−−−−−−−
11100 00000 00010 00000

−−−−−−−−−−−−
01100 00000 00010 00000

In the case of multiple instructions, the com-
piler sends them to an instruction memory
unit, which are then sent via a parallel in-
struction bus to the 2AALU one at a time. (In
this respect, the Hensel CPU architecture re-
sembles the Harvard architecture.)
Each time a LOAD or RELOAD is executed, the
FC-2-2025 instruction for the (re)load is stored
in a queue in the instruction memory unit.
Thus, REG1 refers to the FC-2-2025 instruction
first in the queue, and so on.

1.5 Multiplication:
ARIXA and MRIXA

Multiplication and division operations, when
given to the compiler, are converted to AR-
IXA as lists of RELOAD ADDC commands. For in-
stance, the ARIXA command for − 1

3 × 4 is:

LOAD − 1/3

RELOAD ADDC REG1 − 1/3

RELOAD ADDC REG1 − 1/3

ADDC REG1 − 1/3

SciSci Inventions No. 5, Version 1.1 3/5

Numerators and Denominators:
ARIXA and MRIXA

THE RIXA INSTRUCTION SET
ARCHITECTURE

In MRIXA, the list of instructions is given as fol-
lows:

10000 00001 00001 00000

−−−−−−−−−−−−
11100 00001 00001 00000

−−−−−−−−−−−−
11100 00001 00001 00000

−−−−−−−−−−−−
01100 00001 00001 00000

Just as, in the case of addition, subtraction is
treated merely as a matter of adding a neg-
ative number, so too is division simply treated
as multiplication by a number with a non-1
denominator. − 1

3 × 4 is the same as 4
−3 . Thus,

there is no SUBTRACT, MULTIPLY, or DIVIDEcom-
mand in ARIXA; when commands for such
operations are given to the compiler, they
are converted into a list of instructions involv-
ing only addition. Next, let’s consider the
case where the numerators and denomina-
tors are more complicated.

1.6 Numerators and Denominators:
ARIXA and MRIXA

Next, let’s consider a case in which the
numerators and denominators of both
operands are nontrivial, such as 3

15 × 7
21 . In

this case, the Hensel CPU performs multipli-
cation on the numerator and denominator
separately and sends the result of each to
memory, and then retrieves from memory
the PFC-3-2025 encoding of the operand
with the output numerator and denomina-
tor. Thus, in keeping with the RISC philosophy,
the entire computation is still no more than a
series of addition operations.
The command for sending the numerator re-
sult to memory is MEMN, and, for the denom-
inator, MEMD. The command LOAD MEM loads
the operand in memory with the MEMN numer-
ator and MEMD denominator. In ARIXA, the list
of commands is given as follows:

LOAD 3

RELOAD ADDC REG1 3

RELOAD ADDC REG1 3

RELOAD ADDC REG1 3

RELOAD ADDC REG1 3

RELOAD ADDC REG1 3

RELOAD ADDC REG1 3

MEMN REG1

LOAD 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

RELOAD ADDC REG2 15

MEMD REG2

LOAD MEM

The MRIXA command for MEMN is 00100. The
command for MEMD is 00010. In both cases,
one need only include these commands
and specify the register. The LOAD MEM com-
mand is 10001. Thus, the MRIXA commands
are as follows:

SciSci Inventions No. 5, Version 1.1 4/5

Review
THE RIXA INSTRUCTION SET

ARCHITECTURE

10000 00000 00011 00000

−−−−−−−−−−−−
11100 00000 00011 00000

−−−−−−−−−−−−
11100 00000 00011 00000

−−−−−−−−−−−−
11100 00000 00011 00000

−−−−−−−−−−−−
11100 00000 00011 00000

−−−−−−−−−−−−
11100 00000 00011 00000

−−−−−−−−−−−−
11100 00000 00011 00000

−−−−−−−−−−−−
00100 00001 00000 00000

−−−−−−−−−−−−
10000 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−

11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
11010 00000 01111 00000

−−−−−−−−−−−−
00010 00010 00000 00000

−−−−−−−−−−−−
10001 00000 00000 00000

1.7 Review
Given below are the ARIXA and MRIXA com-
mands considered herein:

LOAD | 10000
ADD | 01000

ADDC REG1 | 01100
ADDC REG2 | 01010

RELOAD ADDC REG1 | 11100
RELOAD ADDC REG2 | 11010

LOAD MEM | 10001

Looking ahead, it may be the case that a
second opcode block is necessary in order
to allow for REG commands beyond, say, REG1
and REG2. Given the distributed nature of
Hensel load-store, one could in principle al-
low for REG queuing of FC-2-2025 instructions
to be rather long.

SciSci Inventions No. 5, Version 1.1 5/5

Published by SciSci Press

サ
イ
サ
イ
・
リ
サ
⃝
チ

S
ciS

ci R
esearch

	The RIXA Instruction Set Architecture
	PFC-3-2025 and FC-3-2025 Encoding Formats
	LOAD: ARIXA and MRIXA
	ADD, ADDC, and REG
	RELOAD: ARIXA and MRIXA
	Multiplication: ARIXA and MRIXA
	Numerators and Denominators: ARIXA and MRIXA
	Review

