
How Fast, Exact Computing Works
James Douglas Boyd
Founder and CEO/CTO, SciSci Research

Beyond Floating-Point
SciSci is building its exact processing units (EPUs) based
on an architecture involving an alternative number repre-
sentation and logic design to floating-point, enabling faster,
perfect-precision compute. I’ll explain here, as much as I
can, what this alternative’s promise is and how it works.

The floating-point (FP) format makes rounding errors be-
cause the it can’t encode numbers exactly, no matter how
many bits it uses. This is due to the mathematical prop-
erties of floating-point numbers. From the point of view of
number theory, floating-point errors are inevitable because
floating-point numbers are real numbers (i.e., in R) approx-
imated by rationals (i.e., in Q), and these are unavoidably
prone to rounding errors. Fortunately, from a number the-
ory point of view, there’s an exact alternative to FP.

The Origin of Rounding Errors
Every real number is given as some (infinite) sequence,
called a Cauchy sequence. (This can just be thought of
as the decimal expansion of a number, such as 5.1621 . . .)
The trouble withR is that these Cauchy sequences are non-
unique; they belong to equivalence classes. Take the ex-
ample of the number 1. It can be encoded as 1.000 . . . or
0.999 . . . Both converge to 1.

Why is non-uniqueness a problem? Let’s cut off each of
these Cauchy sequences at two significant figures. One is
1.0, and the other is 0.99; the rounding error, 0.010, is the
difference between these non-unique sequences under fi-
nite cutoff. One might say, "let’s just use 1.0 then; forget
0.99", but if we want to encode, say, 1

3 , we have to use 0.99
and divide by 3, giving us 0.33; that’s why the decimal ex-
pansion for 1

3 always admits some error. So, floating-point
rounding error, technically speaking, is just a consequence
of the fact that R doesn’t support unique encodings.

Exact Arithmetic

On the other hand, if Cauchy sequences are unique, this
problem doesn’t arise; one can do exact arithmetic. The
only way to get Cauchy sequences, however, is to give a
"completion" of Q (i.e., a larger field that can support infi-
nite sequences), and R is easily the best-known comple-
tion. From Ostrowski’s theorem, however, we know that
there is one alternative to R, the p-adic fields Qp. The p-
adic fields have unique Cauchy sequences, allowing exact
arithmetic. SciSci’s EPU number representation and archi-
tecture is based on p-adic arithmetic.

Why Exact Arithmetic is Fast

Although I can’t discuss SciSci’s instruction set architec-
ture (ISA) in detail, I will say that it works with exact num-
ber representations in a way that enables major paralleliza-
tion unlocks for arithmetic, lending the ISA to the extremely
multi-core implementation of the EPU. Such parallelization
makes the ISA suitable for an AI accelerator chip, and also
contributes to speed advantages over floating-point.

Another speed advantage, which I can more liberally dis-
cuss, has to do with a per-operation efficiency gain from
exact arithmetic. Floating-point arithmetic follows the
IEEE standard, which encodes numbers using an expo-
nent/mantissa format. Adding these numbers is actually
rather laborious, requiring separate steps for exponents,
mantissas, rounding, etc. By contrast, the EPU addition
involves only one single step.

All told, the EPU should enjoy a ∼ 15× efficiency gain per
operation per ALU over floating-point. Now, consider how
that scales up for an extremely multi-core EPU... For an
EPU with as many ALUs as a Blackwell Ultra, that’s a gain
of roughly a million operations.1

1The Blackwell Ultra has 160 SMs, each with 128 CUDA cores. 160 × 128 × 15 = 921600.

SciSci Bulletin No. 3 1/1

https://www.sciencedirect.com/science/article/pii/S0747717120300869
https://www.sciencedirect.com/science/article/pii/S0747717120300869
https://developer.nvidia.com/blog/inside-nvidia-blackwell-ultra-the-chip-powering-the-ai-factory-era/

