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THE VIRTUAL HENSEL

1 The Virtual Hensel
This report is a resource to accompany a
forthcoming public demonstration of Virtual
Hensel I, which is to be the first demo of a vir-
tual machine based on the Hensel CPU ar-
chitecture. The Hensel CPU architecture, de-
signed to perform exact arithmetic, presents
an alternative to floating-point computing,
which, by comparison, is but approximate.
Exact arithmetic is performed in the field Q2,
i.e., the field of 2-adic numbers, rather than
R. The original Hensel CPU report gives an in-
troductory – albeit notation-heavy – descrip-
tion of coding standards for 2-adic operands
and instructions, and a sketch of an architec-
ture for e!cient 2-adic computations. Func-
tioning as a proof-of-principle via in silico em-
ulation of this architecture, Virtual Hensel I
gives a first demonstration of the realizability
of Q2-based exact computing.
Being of modest demonstrative capability,
the Virtual Hensel I can perform exact arith-
metic on just over 50, 000 operands. That is
to say, all 50, 000 have FC-3-2025 encodings
(with FC-3-2025 being a new standard for ω-
IDs introduced in this report), and can be
loaded to the 32 processor registers in the Vir-
tual Hensel I processor cluster. The forthcom-
ing Virtual Hensel I demo illustrates explicitly
how load-store is performed in the processor
and how 2-adic arithmetic is executed by 2-
adic arithmetic logic units (2AALUs).

1.1 Report Scope
Necessarily building upon the architectural
description provided in the original report,
this report is written in a manner avoidant
of undue repetition and redundancy, though
at times recapitulating (in sparser detail) cru-
cial descriptions given in the original in or-
der to provide background for introducing
new developments. For instance, an exten-
sive review of FC-1-2025 operand encodings
(including the RFC, LFC, and TFC blocks of
the encoding) will not be subject to elabo-
ration here. Nonetheless, a light recapitula-

tion of FC-1-2025 is in order so as to provide
a premise for introducing FC-3-2025. So far
as descriptive content is concerned, priority
is given to that which was left wanting in the
original report, particularly concerning the ω-
ID system and load-store architecture, each
of which, despite being subject to nontriv-
ial discussion in the original report, has en-
joyed improvement as the task of realizing a
proof-of-principle for general exact comput-
ing with the Hensel architecture was under-
taken in building Virtual Hensel I.

Following the updates on ω-IDs and load-
store, the report will proceed with a descrip-
tion of Virtual Hensel I itself, with particu-
lar attention paid to the processor, cover-
ing processor register addresses and loca-
tions in the cluster, as well as load-store.
(2AALU operations are covered in the 2AALU
report). These descriptions will be comple-
mented by both worked examples and Vir-
tual Hensel I visualizations. The report con-
cludes with wider analysis of the implications
of the Virtual Hensel I proof-of-principle for
the more general prospect of exact com-
puting with the Hensel architecture. With Vir-
tual Hensel I being of modest performance,
this section focuses particularly on prospec-
tive scaling properties, including the scalabil-
ity of processor operand capacity, the arith-
metic reachof processor operations, and the
cost-savings of exact computation relative
to floating-point.

Those desiring an overall, gentle exposition
on the Virtual Hensel and Hensel CPU archi-
tecture can refer to the forthcoming demo
exposition video, to be released by SciSci Re-
search and Future Computing in due course.
This report includes stylized illustrations from
the Virtual Hensel I demo, and thus, "snap-
shots" of the kind of content to be presented
in the video. The demo video itself will
be largely expository in nature, intended to
provide an accessible introduction to exact
computing. Thus, following the release of the
demo video, this present report may be of in-
terest as a deeper resource for those seeking
a technical reference on Virtual Hensel I.
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HOW THE VIRTUAL HENSEL WORKS

2 How the Virtual Hensel
Works

2.1 FC-3-2025 Encodings
The Virtual Hensel’s load-store architecture
and arithmetic operations are designed for
operands encoded according to FC-3-2025,
an encoding standard for ω-IDs introduced
herein. Compared to the FC-1-2025 stan-
dard from the original report, the distin-
guishing features of FC-3-2025 are but slight.
FC-1-2025 encoded the coe!cients of 2-
adic expansions until reaching a repeti-
tive subsequence. For instance, a 2-adic
number 011101.112 is encoded by FC-1-2025
as (→, 0, 1,→, 1, 1, 0, 1,→, 1, 1), where (0, 1) be-
longs to the repetition block RFC, (1, 1, 0, 1)
belongs to the decimal-left block LFC, and
(1, 1) belongs to the decimal-right block TFC.
The advent of FC-3-2025 was the insight
that these blocks are additive: the 2-adic
expansion giving 011101.112 is just the sum
of the individual separate expansions giv-
ing 01, 1101.2, and .112, or, in terms of FC-1-
2025, a merging of the blocks (→, 0, 1,→,→),
(→,→, 1, 1, 0, 1,→), and (→,→,→, 1, 1). Thus,
the FC-3-2025 standard generates encod-
ings from individual blocks, which are treated
as primitives.
A key consequence of this construction is
that FC-3-2025 does not necessarily include
all coe!cient terms in the 2-adic expan-
sion before the repetitive subsequence, re-
sulting in encodings that di"er from FC-
1-2025. Consider, for instance, 4

3 , which
is but 2↑ 2

3 . The FC-1-2025 encoding is
(→, 0, 1,→, 1, 0, 0,→), because the 2-adic ex-
pansion is 22 + 23 + 25 + 27 . . ., giving 01100.2.
However, the FC-1-2025 encoding for ↑ 2

3 is
but the single block (→, 1, 0,→,→), and the FC-
1-2025 encoding for 2 is but the single block
(→,→, 1, 0,→). Thus, the FC-3-2025 merges
these two FC-1-2025 blocks, as primitives, just
as one would add 2 and ↑ 2

3 . So, the FC-3-
2025 encoding is (→, 1, 0,→, 1, 0,→). A more
rigorous definition of FC-3-2025 can be given
with reference to the ω-ID system, the topic
of the next subsection.

2.2 The ω-ID System

The Hensel CPU architecture endows the pro-
cessor with a cluster of register processors.
The cluster, possessing a nested structure de-
scribed in the original report, facilitates arith-
metic and load-store in a manner tailored to
e!cient 2-adic computation. Register pro-
cessors are assigned specific addresses, such
as (1, 1, 0, 1) or (1, 1) which match FC-3-2025
block primitives. Thus, an FC-3-2025 encod-
ing for an operand built from block primi-
tives is loaded to the processor by activating
theprocessor registers with addressesmatch-
ing these blocks. Operands are thereby
loaded in distributed fashion, with the individ-
ual blocks that give their FC-3-2025 encod-
ings each loaded to a distinct processor reg-
ister with the appropriate address. Match-
ing is facilitated by treating these block prim-
itives as IDs to be matched with proces-
sor register addresses. These are the so-
called ω-IDs; they are the coe!cient se-
quences encoded in FC-3-2025 primitives,
which, matched against processor regis-
ter addresses, permit distributed loading of
operands to the Hensel processor.

Thus, the Hensel CPU loads operands ac-
cording to the ω-ID system, as described
herein. For a given operand q, the ID ω(q)
may consist of several components. A prim-
itive ID ωp encodes a 2-adic number given
by but a single RFC, LFC, or TFC block. For
instance, FC(1) is encoded as LFC(1) = (1).
FC

(
1
2

)
is encoded as TFC( 1

2 )
= (1). FC

(
↑ 1

3

)
is

encoded as RFC(→ 1
3 )

= (0, 1). The thing to em-
phasize is that encoding each of these num-
bers requires only a single RFC, LFC, or TFC

block; none requires multiple blocks (e.g.,
both LFC and RFC blocks). Isolating these RFC,
LFC, or TFC blocks, one obtains ωp primitives:
(1) is a primitive, and so too is (0, 1). Hensel
load-storematches ωp against processor reg-
ister addresses in the processor cluster.

ωp primitives can then bemerged – and their
encoded 2-adic expansions thereby added
– to obtain encodings for other operands;
this is how FC-3-2025 encodings for > 50, 000
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Load-Store HOW THE VIRTUAL HENSEL WORKS

operands for Virtual Hensel I were algorithmi-
cally generated. For instance, as ↑ 1

5 + 1 = 4
5 ,

the encoding for FC( 45 ) can be obtained by
merging the ωp for FC

(
↑ 1

5

)
and FC(1): the en-

coding is FC( 45 ) = (→, (0, 0, 1, 1),→, (1),→, ()). It
is said that FC

(
4
5

)
has a compound ID, ωc,

built from primitive IDs ωp.
A given ωc can, in turn, be decompounded
into constituent RFC, LFC, or TFC blocks. These
are written as ωd

(↑,→,→) (i.e., the RFC block),
ωd
(→,↑,→) (i.e., the LFC block), or ωd

(→,→,↑) (i.e.,
theTFC block), where, for specific encodings,
we replace ↓ with the length of the block.
Thus, an FC-3-2025 encoding for an operand
q is preliminarily defined as follows:

FC↑ (q) :=
(
→,ωd

(↑,→,→),→,ωd
(→,↑,→),→,ωd

(→,→,↑)

)
(1)

where ωd
(↑,→,→) = FC(εA), ωd

(→,↑,→) = FC(εB),
ωd
(→,→,↑) = FC(εC), and εA + εB + εC = q, the

ε being 2-adic expansions. (This definition,
which is not quite complete, is given in full in
section 2.3.1.) The Virtual Hensel I demo sup-
ports computations on operands with com-
pound IDs up to a ωc

(5,5,5) encoding ceiling:
there are over 50, 000 such operands.
Generating operand IDs algorithmically ac-
cording to compound construction is ef-
ficient and amenable to scaling. Fur-
thermore, it respects the arithmeticity of
operands by design; that is to say, one ob-
tains a large number of operand pairs whose
sum or product (or additive or multiplicative
inverse) is also an operand encoded within
the ωc

(5,5,5) ceiling. That ωc
(5,5,5) is selected as

the ceiling owes to the nest depth of the Vir-
tual Hensel processor. Its cluster, !virt

5 , is of
nest depth 5 (+2). Thus, it contains 25 = 32
processor registers, which can thus match
with ωd

(n,→,→), ωd
(→,n,→), or ωd

(→,→,n), with n ↔ 5.

One might note that this constructive ap-
proach to generating IDswill necessarily yield
multiple IDs for the same operand. For in-
stance, if one constructs a ωc with the ωd for
some operand q as well as the ωd for both
FC(↑1) and FC(1), the resulting ωc merely en-

codes q, because, additively speaking, the
↑1 and 1 cancel each other out; one could
have just used

(
(), (),ω(→,→,n) (FC(q))

)
, rather

than
(
ω(2,→,→) (FC(↑1))

)
,

(
ω(→,1,→) (FC(1))

)
,

and
(
ω(→,→,n) (FC(q))

)
together. However,

such superfluity can be discarded by filter-
ing out generated IDs for minimality. ω-IDs
are always built from sums of ωp (rather than
ωc), and minimize both block length and
the number of primitives included. That is
to say, one selects the FC-3-2025 encoding
ωc
(min(n),min(m),min(l)), where, when permissible,

min(↑) = 0.

2.3 Load-Store
2.3.1 Loading

The load-store unit (LSU) loads operands to
processor registers (PRs) in the processor clus-
ter. Each PR has a unique address, and is
loaded with ω-IDs that match. For instance,
suppose that the address A of a clustered
processor register CPR is A (CPR) = (1, 1). The
PR can be loaded, for instance, with an
operand with ID ωd

(→,→,2) = (1, 1) (i.e., 3
4 ) be-

cause there is a ω-to-A match. The pro-
cessor register is loaded by being activated
with a ϑ-sequence ϑ(0,0,1) (where (0, 0, 1) cor-
responds to (↑,↑, ↓), indicating that the ω-
ID matched is a ωd

(→,→,↑)-ID). Thus, we write
the loaded PR by address and activation se-
quence; in this case, it is A(1,1)

(0,0,1). The informa-
tion encoded in ϑ-sequences is crucial for re-
compounding the individual ωd-IDs back into
a compound ID ωc following a computation
for storage. Thus, an operand is loaded in dis-
tributed fashion across processor registers in
the processor cluster by activating PRswhose
addresses match the ωd-IDs that compose
the FC-3-2025 encoding of the operand.
!virt
5 contains 32 di"erent CPR, each with

a unique address A (CPR). Two addresses
have one nontrivial entry: (0, 0, 0, 0, 0) and
(1, 0, 0, 0, 0, 0). Two have two nontrivial en-
tries: (0, 1, 0, 0, 0) and (1, 1, 0, 0, 0). Four
have three nontrivial entries: (0, 0, 1, 0, 0),
(1, 0, 1, 0, 0), (0, 1, 1, 0, 0), (1, 1, 1, 0, 0). Eight ad-
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Load-Store HOW THE VIRTUAL HENSEL WORKS

dresses have four: (0, 0, 0, 1, 0), (1, 0, 0, 1, 0),
(0, 1, 0, 1, 0), (1, 1, 0, 1, 0), (0, 0, 1, 1, 0),
(1, 0, 1, 1, 0), (0, 1, 1, 1, 0), and (1, 1, 1, 1, 0). Six-
teen of the addresses have five nontrivial
entries: (0, 0, 0, 0, 1), (1, 0, 0, 0, 1), (0, 1, 0, 0, 1),
(1, 1, 0, 0, 1), (0, 0, 1, 0, 1), (1, 0, 1, 0, 1),
(0, 1, 1, 0, 1), (1, 1, 1, 0, 1), (0, 0, 0, 1, 1),

(1, 0, 0, 1, 1), (0, 1, 0, 1, 1), (1, 1, 0, 1, 1),
(0, 0, 1, 1, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1), and
(1, 1, 1, 1, 1). These alone, thanks to a num-
ber of e!ciency tricks ascertained and
deployed in the development of the Vir-
tual Hensel, can handle over 50, 000 distinct
operands.

Figure 1: A labeled illustration of the 32 addresses A (CPR) addresses for the cluster processor
registers in the Virtual Hensel. The blue entities visualize register processors carriers, and the
grey enclosures visualize the nested carrier packaging regime according to which registers are
arranged. (Trivial entries in addresses are omitted; for instance, (1, 0, 0, 0, 0) is labeled merely as
(1).)

SciSci Inventions No. 2, Version 1.6 5/19



Load-Store HOW THE VIRTUAL HENSEL WORKS

One will quickly notice two coding-theoretic
issues that arise when trying to facilitate load-
store via ωd-A matching.
First, TFC block entries read from left to right,
and the A values for registers read from left
to right, whereas RFC and LFC block entries
read from right to left. This is rectified via the
following trick. One applies a reverse opera-
tor r to the LFC ωd-ID andmatches r

(
ωd
(→,n,→)

)

with the appropriate A. One also applies r to
ωd
(n,→,→)-IDs (i.e., for RFC).

Second, padding RFC entries leaves the
length of the repeated sequence unclear.
For instance, whereas, in the case of TFC, 101
is no di"erent from the right-padded 10100,
in the case of RFC, 01 and 01000 are di"er-
ent repeating sequences. To rectify this is-
sue, the FC-3-2025 standard also includes a
new block, NFC, which gives the length of
RFC. BecauseNFC is integer-valued, it also has
a ωd

(→,n,→)-ID, and is subject to the r opera-
tor. By specifying the length of RFC repeating
sequences, one can encode all FC-3-2025
operands with a standard length, i.e., as the
list

(NFC,RFC, LFC,TFC) (2)

with each block encoded by the same num-
ber of bits, depending on the CPU. (For in-
stance, in the case of the Virtual Hensel I,
each block is of length 5. This will be im-
portant for the instruction set architecture.)
We’ll refer to any encoding involving solely
the RFC, LFC,TFC blocks, without the coding
tricks, as the pre-FC-3-2025, or PFC-3-2025,
encoding.
A load task for an operand q can be decom-
posed into up to four distinct loads ϖ, with
up to four distinct A (CPR) destinations, which
we’ll write as A

(
CA
PR

)
, A

(
CB
PR

)
, A

(
CC
PR

)
, and

A
(
CD
PR

)
. The loads are written as follows:

ϖA(FC(q)) :
(
r

(
ωd
(n,→,→)(FC(q))

)
, (↑, ↓,↑,↑)

)
↗

CA
PR

(
A

ωd
(n,→,→)

(→,↑,→,→)

)
(3)

ϖB(FC(q)) :
(
r

(
ωd
(→,n,→)(FC(q))

)
, (↑,↑, ↓,↑)

)
↗

CB
PR

(
A

ωd
(→,n,→)

(→,→,↑,→)

)
(4)

ϖC(FC(q)) :
((

ωd
(→,→,n)(FC(q))

)
, (↑,↑,↑, ↓)

)
↗

CC
PR

(
A

ωd
(→,→,n)

(→,→,→,↑)

)
(5)

and

ϖD(FC(q)) :
(
r

(
ωd
(→,n,→)(FC(q))

)
, (↓,↑,↑,↑)

)
↗

CD
PR

(
A

ωd
(→,n,→)

(↑,→,→,→)

)
(6)

Consider the example of 13
6 . It’s the sum

of ↑ 1
3 , 1

2 , and 2, all of which have ωp

FC-3-2025 encodings; thus, its compound
ID, ωc(FC( 136 )) = (→, (0, 1),→, (1, 0),→, (1)),
is decompounded into ωd

(2,→,→) = (0, 1),
ωd
(→,2,→) = (1, 0), and ωd

(→,→,1) = (1). In
this case, ωd

(→,2,→) = (1, 0) is acted on
by the reverse operator in order to
yield r

(
ωd
(→,2,→)

)
= (0, 1). (Note that ωd,

regardless of being reversed or not,
are right-padded to length five for A-
matching, such that (0, 1) is treated as
(0, 1, 0, 0, 0).) As for

(
ωd
(2,→,→)

)
= (0, 1), it is

reversed to r

(
ωd
(→,2,→)

)
= (1, 0). Thus, the

loads are ϖA
(
FC

(
13
6

))
= CA

PR

(
A

(0,1)
(→,↑,→,→)

)
,

ϖB
(
FC

(
13
6

))
= CB

PR

(
A

(0,1)
(→,→,↑,→)

)
, as well as

ϖC
(
FC

(
13
6

))
= CC

PR

(
A

(1)
(→,→,→,↑)

)
. Furthermore,

the final and full FC-3-2025 form will include
a NFC term, r

(
ωd
(→,2,→)

)
= (0, 1), loaded as

ϖD
(
FC

(
13
6

))
= CC

PR

(
A

(0,1)
(↑,→,→,→)

)

Consider, on the other hand, the operand
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511
62 . Here,

ωc

(
FC

(
511

62

))
=

(→, (0, 1, 0, 0, 0),→, (1, 0, 0, 0),→, (1)) (7)
The TFC ωd-ID is ωd

(→,→,1) = (1, 0, 0, 0, 0).

Next, ωd
(→,4,→) = (0, 1, 0, 0, 0) is reversed to

r

(
ωd
(→,4,→)

)
= (0, 0, 0, 1, 0). ωd

(5,→,→) = (0, 1, 0, 0, 0)

is reversed to (0, 0, 0, 1, 0). Finally, the full FC-
3-2025 encoding also includes the NFC term,
(0, 1, 0, 0, 0), reversed to (0, 0, 0, 1, 0).

Figure 2: Illustration of the A addresses for loads ϖA(FC( 136 )), ϖB(FC( 136 )), and ϖC(FC( 136 )), as well
as ϖA(FC( 51162 )), ϖB(FC( 51162 )), ϖC(FC( 51162 )), and ϖD(FC( 51162 )). The top panel illustrates ϖD loads; the
second highest, ϖA; the second lowest, ϖB; and the lowest, ϖC.

SciSci Inventions No. 2, Version 1.6 7/19



Re-Loading HOW THE VIRTUAL HENSEL WORKS

Let us review. Each operand has an FC-3-
2025 encoding which is decomposed into
RFC, LFC, and TFC blocks (i.e., ωd-IDs), sub-
ject to come coding tricks, – and also in-
cludes an NFC block – which are loaded in
distributed fashion to various processor reg-
isters in the processor cluster with matching
addresses. A given operand can be de-
compounded and loaded to up to four dis-
tinct processor registers, distributed through-
out the processor cluster. The processor reg-
isters are loadedby being activatedwith a ϑ-
sequence which contains information about
the kind of ωd-ID being loaded, which is used
for re-compounding ωd-IDs back to ωc-IDs,
the latter necessary for storage.

2.3.2 Storing

Following an arithmetic computation (dis-
cussed in the next section), the processor re-
turns an output. The output too is loaded to
the processor registers, which we’ll write as
CA↑

PR, CB↑

PR, and CC↑

PR, as well as a possible NFC-
block-loaded PR, CD↑

PR. Matched against the
addresses for CA↑

PR, CB↑

PR, and CC↑

PR (and possibly
CD↑

PR) are the ωd-IDs for this output. In order for
the output to be stored, it must be recom-
pounded back to a ωc-ID.
Recompoundment begins when the master
PR MPR receives the three or four ωd from
the LSU, which it retrieves from CA↑

PR, CB↑

PR, and
CC↑

PR (and possibly CD↑

PR). MPR then sends these
to MLSU, which composes them into an FC-
3-2025-encoded operand for LSU-facilitated
storage. The master LSU performs the follow-
ing compoundment:

ϱ :
(
r

(
ωCD↑

PR

)
, r

(
ωCA↑

PR

)
, r

(
ωCB↑

PR

)
,ωCC↑

PR

)
↗

(
r
→1

(
ωCD↑

PR

)
, r→1

(
ωCA↑

PR

)
, r→1

(
ωCB↑

PR

)
,ωCC↑

PR

)
(8)

where r→1 is a reverse-reverse operation.

2.4 Re-Loading
LSU loaders in the Hensel processor perform
operations on each ωd-ID of an operand en-
coding, yielding an output with a new col-
lection of ωd-IDs. Under the Hensel load-store
architecture, the original operand can be
re-loaded to new registers whose addresses
match these ωd-IDs. The Hensel LSU performs
re-loads via FC-2-2025 instructions, which
modify A-values in accordance with new ωd-
IDs, and then passing the ϑ-sequences to the
registers with these A-values.

As described in the load-store report, these
modifications are performed by LSU loaders.
The relationship between LSU modifications,
processor register positions, and the nested
structure of the processor follows straightfor-
wardly from the circuit-level combinational
logic according to which loader operations
are executed and FC-2-2025 instructions are
implemented. This is the topic of the load-
store report. For now, it su!ces to give a
rather qualitative description of this relation-
ship, an explanation of which is to be found
in the load-store report.

With there being five processor register clus-
ter levels in !virt

5 and 25 processor registers,
and the ωd-IDs being of maximum block
length 5, a loader at each level performs a
modification on a di"erent entry in the ωd-ID,
in parallel, with the right-most entry modified
at level ς = 6 and the leftmost entry modified
at level ς = 2. Then, at each level where a
modification is performed, there is a corre-
sponding entry modification in the A-value
at the entry position corresponding with the
level, with each entry modification in turn
changing the A-value, and thus the CPR to
which the ωd-ID is to be loaded. With pro-
cessor registers packaged in nested carriers,
and with processor register addresses deter-
mined by location in the nested processor
structure, there is a direct correspondence
between A values and circuit board loca-
tions of PRs. Thus, a loader modifying a sin-
gle entry in turn a"ects the location in which
the address-matching processor register will
be located; a change of one "hop", as will
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be the turn of phrase used here. Moreover,
because, in the nested structure, each pro-
cessor register has only one other same-level-
ς neighbor packaged within the same level-
(ς+ 1) carrier, a modification of an address
by a given level-ς loader yields an output
whose CPR location is within the nested car-
rier packaging of the neighbor of the pro-
cessor register whose address was modified.
It is for this reason that a modification is at
times referred to by the shorthand term "hop";
it yields an output stored in a CPR located
in the neighboring nested carrier package,
such that a modification amounts to "hop-
ping" fromonenestedcarrier package toan-
other. At outermost levels in the nested struc-
ture, these hops span over the circuit board,
whereas the hops are less distal at innermost
levels, as onewould expect given the nested
nature of carrier packaging.
The CPR are surface-mounted to the printed
circuit board according to address, such
that, for instance, two processor registers
which are packaged in the same nested
carrier packaging save the innermost clus-
ter level di"er in address by only one entry
(the leftmost entry), and will neighbor one
another on the circuit board. If they di"er in
entries further to the right, then their nested
carrier packaging will di"er at higher levels,
such that the processor registers will be more
distally positioned on the board. Moreover,
for any two process registers CPR and C↓

PR, the
number of entries by which the addresses
A(CPR) and A(C↓

PR) di"er is the same as the
number of levels at which their nested carrier
packaging di"ers. (This is all made clearer by
Figure 1, which shows the A-values of the 32
CPR.)
Herein, wewill describe loader operations us-
ing the high-level shorthand of "hop calcu-

lus", eliding underlying combinational logic,
and "ϑ-sequence passing" as a higher-level
shorthand for the load-store procedure for
outputs of 2AALU arithmetic. A more de-
tailed treatment of combinational logic and
circuit design can be found in the load-store
report.
Loads and reloads are performed on FC-3-
2025-encoded operands according to FC-
2-2025 instructions, which guide the loaders
by specifying the entries in an operand en-
coding to be modified, and the cluster level
at which the modification is to take place.
"Hop operations" are a shorthand for loader
modifications. If the modification at level ς is
made from 0 to 1, then a forward hop hεϑ is
taken. If the modification is made from 1 to
0, then a backward hop hεϑ is taken.
Hops can occur at any of the five clus-
ter levels in !virt

5 . According to the proces-
sor design given in the original report, the
overall processor will have 5 (+2) levels, with
the lowest level (i.e., ς = 1) for the CPR and
the greatest level (i.e., ς = 7) for the MPR

and MLSU. The middle five are for loaders.
A hop hεϑ=2 is then equivalent to a reload
that modifies an operand by (1, 0, 0, 0, 0);
hεϑ=3, a modification by (0, 1, 0, 0, 0); hεϑ=4, a
modification by (0, 0, 1, 0, 0); hεϑ=5, a mod-
ification by (0, 0, 0, 1, 0); and hεϑ=6, a mod-
ification by (0, 0, 0, 0, 1). Likewise, a hop
hεϑ=2 is equivalent to a reload that modi-
fies an operand by (↑1, 0, 0, 0, 0) to a ωd;
hεϑ=3, a modification by (0,↑1, 0, 0, 0); hεϑ=4,
a modification by (0, 0,↑1, 0, 0); hεϑ=5, a
modification by (0, 0, 0,↑1, 0); and hεϑ=6, a
modification by (0, 0, 0, 0,↑1). If a ωd-ID,
such as (1), is of length > 5, it is right-
padded in 2AALU arithmetic, such that
(0, 1) + (1, 0, 0, 0, 0) = (0, 1, 0, 0, 0) + (1, 0, 0, 0, 0),
summing to (1, 1, 0, 0, 0).
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Figure 3: Illustration of hop visualization in the Virtual Hensel demo. A forward hop hεϑ gives
an output located upward or rightward of the input, and a backward hop hεϑ gives an output
upward or leftward of the input.

2.5 A Worked Example
Let’s take the example of FC

(
59
12

)
+ FC

(
49
24

)
,

which of course yields FC
(
167
24

)
. We can be-

gin all the way at the beginning, with 2-adic
expansions. The expansion for 59

12 is

59

12
=

2→2 + 2+ 23 + 24 + 26 + 28 + 210 + 212 . . . (9)

This, in turn, can be thought of as a
sum of the expansion for 1

4 (which is
simply 2→2), the expansion for 5 (which
is simply 1+ 22), and the expansion for
↑ 1

3 (which is simply 1+ 22 + 24 + 26 . . .).
Sure enough, 5+ 1

4 ↑ 1
3 = 59

12 . Let’s next
turn to the ωp primitives for each.
ωp

(
1
4

)
= (0, 1); thus, ωd

(→,→,2)

(
59
12

)
= (0, 1)

and r

(
ωd
(→,→,2)

(
59
12

))
= (1, 0). Next, be-

cause ωp (5) = (1, 0, 1), it is the case that

r

(
ωd
(→,3,→)

(
59
12

))
= (1, 0, 1). Finally, we

see that because ωp
(
↑ 1

3

)
= (0, 1), it is

the case that ωd
(2,→,→)

(
59
12

)
= (0, 1) and

r

(
ωd
(2,→,→)

(
59
12

))
= (1, 0).

Let’s repeat for 49
24 . The expansion is

49

24
=

2→3 + 2→2 + 1+ 2+ 22 + 24 + 26 + 28 . . . (10)

This is a sum of 3
8 = 2→3 + 2→2, 2 = 21, and

↑ 1
3 = 1+ 22 + 24 + 26 + 28 . . .. ωp

(
3
8

)
= (0, 1, 1);

thus, ωd
(→,→,3)

(
49
24

)
= (0, 1, 1). Next, be-

cause r (ωp (2)) = (0, 1), it is the case that
r

(
ωd
(→,2,→)

(
49
24

))
= (0, 1). Finally, for RFC,

ωp
(
↑ 1

3

)
= (0, 1); thus, it is the case that

r

(
ωd
(2,→,→)

(
49
24

))
= (1, 0).

Lastly, 167
24 = ↑ 2

3 + 7+ 5
8 , so one gets
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Figure 4: Arithmetic example: 3+ 7 = 10. The input FC(3) is loaded to the CPR with addressA(1,0,1)
(→,3,→)

and the output FC(10) is loaded to the CPR with address A
(0,1,0,1)
(→,4,→) following the computation(

hε6 , h
ε
5 , h

ε
4

)

the following: ωd
(→,→,3)

(
167
24

)
= (1, 0, 1),

r

(
ωd
(→,3,→)

(
167
24

))
= (1, 1, 1), and, finally,

r

(
ωd
(2,→,→)

(
167
24

))
= (0, 1).

Let’s now look at the operand re-loads in
terms of hop calculus. The arithmetic mod-
ification on the A-value for ωd

(→,→,2)

(
59
12

)
(with

input (0, 1) and output (1, 0, 1)) involves three

hops: hεϑ=4, h
ε
ϑ=3, h

ε
ϑ=2, which adds (0, 0, 1, 0, 0),

subtracts (0, 1, 0, 0, 0), and adds (1, 0, 0, 0, 0),
respectively. The modification on the A-
value for r

(
ωd
(→,3,→)

(
59
12

))
(with input (1, 0, 1)

and output (1, 1, 1)) involves one hop: hεϑ=3.
Finally, the modification of the A-value for
r

(
ωd
(2,→,→)

(
59
12

))
involves two hops, hεϑ=3 and

hεϑ=2.
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Figure 5: Visual illustration of addition: FC
(
59
12

)
+ FC

(
49
24

)
. The uppermost illustration displays the

NFC block, which remains unchanged. The second uppermost illustration shows RFC block arith-
metic, which takes r

(
ω(2,→,→)(

59
12 )

)
= (0, 1) as input and yields r

(
ω(2,→,→)(

167
24 )

)
= (1, 0) as output,

whose register is separated by two hops. The middle illustration displays the LFC block arith-
metic, which takes r

(
ω(→,3,→)(

59
12 )

)
= (1, 0, 1) as input and yields r

(
ω(→,4,→)(

167
24 )

)
= (1, 1, 1) as out-

put, whose register is separated by one hop. The lowermost illustration displays the TFC portion
arithmetic, which takes ω(→,→,2)(

59
12 ) = (0, 1) as input and yields ω(→,→,3)(

167
24 ) = (1, 0, 1) as output,

whose register is separated by three hops.
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3 Virtual Hensel Demo

SciSci recently releasedademo video for the
Virtual Hensel I. The video includes anima-
tions simulating the combinational logic of
2AALUs and operand loading to the register
cluster, as shown in Figure 6. Examples of ex-
act arithmetic are shown, with inputs given
in ARIXA assembly and converted to MRIXA
machine code, with MRIXA outputs giving
exact numerical results. A comparison with
20-bit floating point is also given. (See Figure
7 for an example.)

The Virtual Hensel video can be viewed
as presenting a brief visual and compu-
tational synthesis of recent SciSci reports.
The computations shown are executed us-
ing the same combinational logic that phys-
ical 2AALUs would use for length-5 ωd-IDs,
i.e., the same Boolean functions as its gates.
The ωd-IDs are subject to ωd-Amatching, and

loaded to virtual registers the same way that
they would be loaded to physical registers in
the processor cluster. TheMRIXA output, writ-
ten in bits, is the same as the digital output
that would be obtained from the physical
CPU circuit. In summary, the Virtual Hensel
computations shown in the demo are real
computations, and the same as those which
a 20-bit Hensel would perform (only virtual).
The key di"erence between the Virtual
Hensel and the actual Hensel CPU is that the
latter will have a larger bit-width; it will have
more registers and, producing operands
longer than 20 bits in length, have more cir-
cuitry in its 2AALUs. Nonetheless, if the ac-
tual CPU only had 32 registers and gave 20-
bit outputs, it would be the same. The other
point to note is that, whereas the demo, itself
rather brief, only gives examples of addition
and subtraction, ARIXA/MRIXA already sup-
ports multiplication/division, as discussed in
the RIXA report.

Figure 6: Virtual Hensel demo video image: visualization of 2AALU combinational logic and
register cluster operand loading, with computations instructed by ARIXA input and returning
MRIXA output.
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Figure 7: Virtual Hensel demo video image: An ARIXA assembly input, ADD 707/160 815/96,
is given, converted to MRIXA input, and computed by the Virtual Hensel to return
00101 10110 01110 01100 as MRIXA output. This is then converted to the exact result, 1549

120 , by
the compiler. A comparison with 20-bit floating point is also given: the Virtual Hensel prevents a
rounding error of 0.0083.

4 Discussion
4.1 Operand Capacity Scaling
The Virtual Hensel I processor is of nest depth
5+ 2 (i.e., !virt

5 has five levels of loaders, with
the cluster PRs and master LSU/PR in turn
occupying their own levels) and can han-
dle over 50, 000 operands. For a processor
of nest depth L, the number of allowable
operands can be roughly estimated as fol-
lows. Let SP3 be set of 3-tuples drawn from
the set S = {0, . . .L↑ 2}. Then, S gives the
set of lists of block lengths for ωd-IDs up to
length n = L↑ 2. One then accounts for all
possible ωd-IDs up to length n, and all possi-

ble compoundments of possible ωd-IDs into
ωc-IDs. However, inasmuch as not all possi-
ble sequences of 0 or 1 terms actually ap-
pear in FC-3-2025 encodings (e.g., there are
noωd

(→,↑,→)-IDs that terminatewith superfluous
0 terms on the left, or ωd

(→,→,↑)-IDs that end
with superfluous terms on the right), we, as
a rough procedure, divide the total by n. The
formula is as follows:

n→1
|S|→1∑

i=0

|S|→1∑

j=0

|S|→1∑

k=0

2i2j2k (11)

Figure 8 plots the estimated scaling trajec-
tory for Hensel processor operand capacity
by nest depth.
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Figure 8: Estimated scaling behavior for CPU operand capacity by nest depth L.
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4.2 Arithmetic Reach
Beyond operand capacity, one might in-
quire into the number of arithmetic opera-
tions that can be permissibly executed on
such operands. Not all operands loadable
to the processor can be added or multiplied;
namely, pairs whose sumor product exceeds
the ωc

(5,5,5) FC-3-2025 encoding ceiling can-
not be added or multiplied. Thus, one would
like to inquire into the set of !virt

5 -loadable
operands that are 2-ary sums or products of
!virt
5 -loadable operands. Let O!virt

5
be the set

of all !virt
5 -loadable operands. We wish to in-

quire into the following two sets:

{z ↘ O!virt
5

| z = x+ y ≃ x, y ↘ O!virt
5
} (12)

{w ↘ O!virt
5

| w = x⇐ y ≃ x, y ↘ O!virt
5
} (13)

Due to the sheer combinatorics of possible
pairs of loadable operands, we can but con-

duct empirical studies of samples. We will
take 2000 random samples of O!virt

5
, each of

size 15 and, of the 225 admissible operand
pairs obtainable from each sample, check
to see which give sums or products that also
belong to O!virt

5
.

This sample-checking approach gives the
following empirical result. 26.7± 9.7% of the
225 pairs sum to a O!virt

5
value. 0.67± 0.79%

pairs multiply to a O!virt
5

value. Thus, one
infers that the ⇒ 52, 000 operands loadable
to the Virtual Hensel I may be subject to
⇒ 7.2⇐ 108 ± 2.6⇐ 108 distinct 2-ary addition
operations, and 1.8⇐ 107 ± 2.1⇐ 107 distinct
2-ary multiplication operations. While thhe
overdispersion of this last statistic is some-
thing of an eyesore, one can nonetheless
glean from estimates given here how arith-
metic reach scales with operand capacity.

Figure 9: Distribution of the portion of sampled pairs {x, y} ↘ O!virt
5

⇑O!virt
5

that give sums z ↘ O!virt
5
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One might then ask about the distribution
of sum and product values that are mem-
bers of O!virt

5
. Preferring for this distribution to

be as uniform as possible, one might wish
to confirm that their distribution doesn’t dis-
play discernible patches. Figure 10 plots
{w ↘ O!virt

5
| (w = x⇐ y ⇓ w = x+ y) ≃ x, y ↘ O!virt

5
}

where O!virt
5

is a random sample of 1000 en-

tries from O!virt
5
. That is to say, it plots all pairs

from O!virt
5

whose sum or product also be-
longs to O!virt

5
. As one can see, the values ex-

tend outward roughly to 32 along each axis.
Density is heterogeneous, but one doesn’t
find worrisome patches that cannot be at-
tributed to sample size.

Figure 10: A plot of pairs drawn from O!virt
5
, where |O!virt

5
| = 1000, whose sum or product also

belongs to O!virt
5 .
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Computing DISCUSSION

4.3 The Cost-Savings of Exact
Computing

SciSci Research and Future Computing
are working to realize exact computing
to address a critical juncture in the high-
performance computing industry. Com-
puting performance is now scaling to a
point where floating-point errors dangerously
accumulate. The IEEE "double-precision"
floating-point standard gives approximations
up to 64 bits, or 16 decimal places. Petas-
cale computing is between 1015-1017 floating-
point operations per second (FLOPS). Thus,

petascale is literally the turning point where
the cumulative error of floating point, per
second, is no longer less than one. As shown
in Figure 11, the cumulative costs per sec-
ond of floating-point errors explode beyond
petascale. Thus, the cost-savings of exact
computing scale profoundly as operations-
per-second performance climbs beyond
petascale. It is for this reason that SciSci Re-
search and FutureComputing are endeavor-
ing to begin a revolution in exact computing
with the Hensel CPU architecture, beginning
with Virtual Hensel I.

Figure 11: Cumulative approximation error per second for floating-point computing at varying
FLOPS milestones, from gigascale computing to zetascale.

.
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5 Looking Ahead

5.1 Roots (i.e., Beyond Q)

A discerning reader may have noted that all
examples of operands given in this report are
FC-3-2025 encodings of 2-adic expansions
of rationals (i.e., elements of Q φ↗ Q2). One
might, from the perspective of algebraic
number theory, express concerns regarding
potential limitations of a Q2-based architec-
ture for handling operands beyond Q, e.g.,
operands that onemight find in algebraic ex-
tensions of Q. For instance, one might ex-
press concerns due to the fact that the ex-
istence of square roots in p-adic arithmetic
depends on issues such as the existence of
squares mod p, with Q2 being exceptionally
thorny among Qp in this respect. However,
with computer engineering priorities in mind,
such complications can be safely avoided
with the help of some design tricks.

The FC-3-2025 standard allows for general, fi-
nite, unique, 2-adic encodings of operands
in Q φ↗ Q2. From there, one can manip-
ulate encodings to handle roots. For in-
stance, both 2 and 1

2 have simple FC-3-2025
encodings.

⇔
2 is just 2

1
2 ; thus, one need

only encode an exponentiation operation
along with these operands in order to en-
code

⇔
2. One should be able to compute

with operands in Q[
⇔
2] this way. Likewise,

the FC-3-2025 encoding for ↑1 is simple; one
can just treat i as ↑1

1
2 . One should be able

to encode operands in Q[i] this way. Be-
cause all operands are decompounded into
ωd-IDs, one could simply augment FC-3-2025
(i.e., to "FC-4-2025") to include an encod-
ing block denoting exponentiation between
TFC, LFC, and RFC blocks. With an encod-
ing standard as such, one could exponenti-
ate any FC-3-2025-encoded rational by any
other FC-3-2025-encoded rational. The ex-
ponent blocks could also be subject to arith-
metic according to the rules of exponentia-

tion. (For instance, the CPU could compute
3

1
2 ⇐ 32 = 3

5
2 by simply adding the exponent

blocks.)
So long as exponentiation is given code-
theoretically (i.e., encoded into the operand
as a block), rather than computed arithmeti-
cally, the Hensel CPU’s computations are still
technically performed in Q2, since the in-
dividual ωd-IDs (including for the exponent
blocks) are all given 2-adic encodings. Uti-
lizing this trick, Future Computing can avail
itself of the benefits of computing in Q2 all
the while eschewing the straits in which one
might find oneself when contending with 2-
adic algebraic number theory.

5.2 The Compiler and ISA
The question of whether exponentiation
should be treated as an operation or part of
the operand o"ers foresight as Future Com-
puting thinks ahead to matters such as ma-
chine code, assembly language, and the
compiler. Indeed, if it is treated as part of
the operand (as suggested above), then it
will be encoded and later abstracted rather
than be computed. However, this is in keep-
ing with Future Computing’s plan for Hensel
CPU operands to be treated "symbolically"
when subject to abstraction in higher-level
programming. For instance, because FC

(
1
3

)

is handled exactly, there is no need to ever
write out decimals for 1

3 ; one can simply
work with the abstraction " 13 ". Thus, likewise,
a computation might yield an output ab-
stracted as

(
5
26

)( 17
4 ), with the exponent unre-

solved. The user, if seeking to obtain a nu-
merical answer (up to their desired decision),
can then elect to do so (as one can do in
software such as Mathematica). Nonethe-
less, numeric resolution will not be performed
by the CPU as part of arithmetic operations.
(Update, the above strategy was indeed
used for the latest Virtual Hensel demo.)
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