
    SciSci Research, Inc. + Future Computing

Inventions N
o. 4 

sci-sci.org/2aalu 
D

O
I: 10.5281/zenodo.17526246  

Hensel CPU Arithmetic Logic Units 
Circuit Design for Exact Computing with  
2-adic Arithmetic

James Douglas Boyd 

http://sci-sci.org/2aalu


SciSci Research, Inc. 
Boulder, Colorado, United States 
www.sci-sci.org 

Copyright © 2025 by SciSci Research, Inc. All Rights Reserved. 

Citation Format:  

Boyd, J.D. (2025). Hensel CPU Arithmetic Logic Units: Circuit Design for Exact 
Computing with 2-adic Arithmetic. SciSci Inventions, 1(4). DOI: 10.5281/
zenodo.17526246



CONTENTS CONTENTS

Contents
1 2-Adic Arithmetic Logic 2

1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Combinational Logic 3
2.1 Length-5 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

SciSci Inventions No. 4, Version 1.8 1/4



2-ADIC ARITHMETIC LOGIC

1 2-Adic Arithmetic Logic
The Hensel CPU is being developed by SciSci
Research and Future Computing to realize
an exact computing capability to replace
floating-point computation. Unlike floating
point numbers, which are approximations of
numbers in R, the Hensel CPU performs ex-
act arithmetic in Q2, or, moreover, on finite
encodings of 2-adic numbers. Arithmetic
operations are executed in the Hensel CPU
processor by 2-adic arithmetic logic units
(2AALUs). At the circuit level, 2AALU opera-
tions on FC-3-2025-encoded operands (i.e.,
finite encodings of coe!cients of 2-adic ex-
pansions) are performed via combinational
logic by Boolean logic gates. Indeed, co-
e!cient values in 2-adic expansions are ei-
ther 0 or 1, as, in turn, are the entries in
FC-3-2025 encodings of operands. Thus, ex-
act computing in Q2 with the Hensel CPU is
compatible with extant MOSFET technology;
2AALUs compute in bits with normal logic
gates. Given herein is a circuit-level descrip-
tion of 2AALU arithmetic.

1.1 Setup
We will consider a Hensel CPU model more
expansive than that seen in the forthcom-
ing Virtual Hensel demonstration. Here, we
will consider a Hensel capable of storing
operands up to 30 bits in length, where the
respective maximal RFC, LFC, and TFC lengths
are 10 bits each. This Hensel can perform
arithmetic operations on operands up to 15

bits in length, where the respective max-
imal RFC, LFC, and TFC lengths are 5 bits
each. According to the Hensel architec-
ture, such a CPU would have a cluster of
1024 processor registers for distributed load-
store of operands. As previously discussed, a
commercial-grade Hensel will have a large
bit-width, larger than that considered herein.
A key point to underscore in this report is,
even for high bit widths, the relative simplicity
by which 2-adic operands can be subject to
arithmetic.

This report will describe binary additive op-
erations, i.e., addition as performed on in-
put operand pairs. Arithmetic proceeds as
follows. We begin with operands ωd (FC(q))
and ωd (FC(p)) and an arithmetic operation
µ := !

post (! (→)). Here, ! is the main arith-
metic step, involving addition on ωd entries
that do not require carrying 1 entries to ex-
tra "digit" places. This is the most compu-
tationally demanding procedure, i.e., it em-
ploys the most gates. In our case, ! acts on
ωd (FC(p)) and ωd (FC(q)), which are each five
bits in length, giving an output that is also five
bits in length. Next, !post is applied to ! (→),
and supplies extra-"digit" 1 values as needed.

The combinational logic for the above pro-
cedure is written out, and circuit diagrams
are provided. Additionally, it is explained
how FC-2-2025 instructions, which have pre-
viously been mentioned in the Virtual Hensel
and load-store reports, are computed. (It’s
nothing more than a simple XOR gate com-
putation.)

For a given pair of operands FC(q) and
FC(p), the above procedures are performed
for 1) ωd

(→,↑,↑) (FC(p)) and ωd
(→,↑,↑) (FC(q)), 2)

ωd
(↑,→,↑) (FC(p)) and ωd

(↑,→,↑) (FC(q)), and 3)
ωd
(↑,↑,→) (FC(p)) and ωd

(↑,↑,→) (FC(q)). All entries
are fed from right to left; thus, in the case of
ωd
(↑,↑,→) (FC(p)) and ωd

(↑,↑,→) (FC(q)) (i.e., TFC),
the entries are reversed, beginning with the
right-most pair

(
T
a
p
5,

T
a
q
5

)
and ending with

the left-most pair
(
T
a
p
1,

T
a
q
1

)
. In the case of

ωd
(→,↑,↑) (FC(p)) and ωd

(→,↑,↑) (FC(q)) (i.e., RFC),
as well as ωd

(↑,→,↑) (FC(p)) and ωd
(↑,→,↑) (FC(q))

(i.e., LFC), addition begins with
(
R
a
p
1,

R
a
q
1

)
or(

L
a
p
1,

L
a
q
1

)
. Here, we will simply write (ap1, a

q
1) to

refer to the first entry for a general pair, with
it understood that this is

(
T
a
p
5,

T
a
q
5

)
,
(
R
a
p
1,

R
a
q
1

)
,

or
(
L
a
p
1,

L
a
q
1

)
. The same follows accordingly

that (ap5, a
q
5) can be

(
T
a
p
1,

T
a
q
1

)
,
(
R
a
p
5,

R
a
q
5

)
, or(

L
a
p
5,

L
a
q
5

)
. The output will be written from left

to right, with the (ap1, a
q
1) output furthest to the

left and the (ap5, a
q
5) furthest to the right.

SciSci Inventions No. 4, Version 1.8 2/4

https://www.sci-sci.org/virtual-hensel
https://www.sci-sci.org/load-store


COMBINATIONAL LOGIC

2 Combinational Logic

2.1 Length-5 Addition

We begin with ! procedures, each of which
yields an output εi (1 ↑ i ↑ 5). The first output
entry, ε1, is obtained thusly:

Xor[ap1, a
q
1]

The ! procedure for ε2 is as follows:

Or[Xor[And[And[ap1, a
q
1],Nor[a

p
2, a

q
2]],

And[Nand[ap1, a
q
1],Xor[a

p
2, a

q
2]]],

And[And[ap1, a
q
1],And[a

p
2, a

q
2]]]

The ! procedure for ε3 is as follows:

And[And[And[Or[Or[Or[Or[

Or[Or[And[And[And[ap1, a
q
1],Or[a

p
2, a

q
2]],

Nor[ap3, a
q
3]],And[And[a

p
2, a

q
2],

Nor[ap3, a
q
3]]],Or[And[Nor[a

p
2, a

q
2],

Xor[ap3, a
q
3]],And[And[Nand[a

p
1, a

q
1],

Nand[ap2, a
q
2]],Xor[a

p
3, a

q
3]]]],

And[And[ap2, a
q
2],And[a

p
3, a

q
3]]],

And[And[And[And[ap1, a
q
1],Or[a

p
2, a

q
2]],

And[ap3, a
q
3]],Nor[a

p
4, a

q
4]]],

And[And[Xor[ap4, a
q
4],And[a

p
3, a

q
3]],

Nor[ap5, a
q
5]]],And[And[And[And[And[a

p
1, a

q
1],

Or[ap2, a
q
2]],And[a

p
3, a

q
3]],

And[ap4, a
q
4]],Nor[a

p
5, a

q
5]]],

Not[And[And[And[Nand[ap1, a
q
1],

Xor[ap2, a
q
2]],And[a

p
3, a

q
3]],

Xor[ap4, a
q
4]]]],Not[And[And[Nor[a

p
2, a

q
2],

And[ap3, a
q
3]],Xor[a

p
4, a

q
4]]]]]

The ! procedure for ε4 is as follows:

And[And[And[Xor[Or[Or[

And[And[And[And[ap1, a
q
1],Or[a

p
2, a

q
2]],

Or[ap3, a
q
3]],Nor[a

p
4, a

q
4]],

And[And[And[ap2, a
q
2],Or[a

p
3, a

q
3]],

Nor[ap4, a
q
4]]],And[And[a

p
3, a

q
3],Nor[a

p
4, a

q
4]]],

Or[Or[Or[Or[Or[And[And[And[

Nand[ap1, a
q
1],Nand[a

p
2, a

q
2]],

Nand[ap3, a
q
3]],Xor[a

p
4, a

q
4]],

And[Nor[ap3, a
q
3],Xor[a

p
4, a

q
4]]],

And[And[Nor[ap2, a
q
2],Nand[a

p
3, a

q
3]],

Xor[ap4, a
q
4]]],And[Nor[a

p
3, a

q
3],

Xor[ap4, a
q
4]]],And[And[a

p
3, a

q
3],

And[ap4, a
q
4]]],And[And[Xor[a

p
3, a

q
3],

And[ap4, a
q
4]],Nor[a

p
5, a

q
5]]]],

Not[And[And[And[Xor[ap1, a
q
1],

Xor[ap2, a
q
2]],Xor[a

p
3, a

q
3]],

And[ap4, a
q
4]]]],Not[And[And[Nor[a

p
2, a

q
2],

Xor[ap3, a
q
3]],And[a

p
4, a

q
4]]]],

Not[And[And[And[Nor[ap1, a
q
1],Xor[a

p
2, a

q
2]],

Xor[ap3, a
q
3]],And[a

p
4, a

q
4]]]]

The ! procedure for ε5 is as follows:

Or[Or[Or[Or[Or[Or[

And[And[And[And[And[ap1, a
q
1],

Or[ap2, a
q
2]],Or[a

p
3, a

q
3]],

Or[ap4, a
q
4]],Nor[a

p
5, a

q
5]],

And[And[And[And[ap2, a
q
2],Or[a

p
3, a

q
3]],

Or[ap4, a
q
4]],Nor[a

p
5, a

q
5]]],

And[And[And[ap3, a
q
3],Or[a

p
4, a

q
4]],

Nor[ap5, a
q
5]]],

And[And[ap4, a
q
4],Nor[a

p
5, a

q
5]]],

Or[Or[And[And[And[And[Nand[ap1, a
q
1],

Nand[ap2, a
q
2]],Nand[a

p
3, a

q
3]],

Nand[ap4, a
q
4]],Xor[a

p
5, a

q
5]],

And[Nor[ap4, a
q
4],Xor[a

p
5, a

q
5]]],

And[And[ap4, a
q
4],And[a

p
5, a

q
5]]]],

And[And[Nor[ap3, a
q
3],Nand[a

p
4, a

q
4]],Xor[a

p
5, a

q
5]]],

And[And[And[Nor[ap2, a
q
2],Nand[a

p
3, a

q
3]],

Nand[ap4, a
q
4]],Xor[a

p
5, a

q
5]]]

SciSci Inventions No. 4, Version 1.8 3/4



Length-5 Addition COMBINATIONAL LOGIC

Figure 1: Illustration of correspondence between the combinational procedure for ε4 and the
graph structure of its circuit. (Inputs are omitted from graph.) In this case, ap1 = True, aq1 = False,
a
p
2 = True, a12 = False, ap3 = False, aq3 = True, ap4 = False, aq4 = False, ap5 = True, and a

q
5 = False.

Figure 2: Illustration of correspondence between the combinational procedure for ε5 and the
graph structure of its circuit. (Inputs are omitted from graph.) In this case, ap1 = True, aq1 = False,
a
p
2 = True, a12 = False, ap3 = False, aq3 = True, ap4 = False, aq4 = False, ap5 = True, and a

q
5 = True.

SciSci Inventions No. 4, Version 1.8 4/4



Published by SciSci Press

サ
イ
サ
イ
・
リ
サ
⃝
チ

S
ciS

ci R
esearch


	2-Adic Arithmetic Logic
	Setup

	Combinational Logic
	Length-5 Addition


