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1 Introducing Hensel

1.1 A CPU Architecture for Q,

Infroduced preliminarily in this report is the
Hensel CPU (~ >t )L CPU), designed ac-
cording to a novel computing architecture
with the aspiration of replacing floating-point
arithmetic with exact arithmetic performed
in Q@ (i.e., 2-adic arithmetic). Here, ex-
act arithmetic denotes arithmetic which, al-
though subject to computational bounds
(e.g.. constrained by a given bit-width), is
nonetheless performed on operands whose
representation in bifs is unique. The Hensel
architecture is designed for arithmetic in Q,
rather than R. In floating-point arithmetic,
"floating-point numbers" (i.e., elements of Q)
approximate elements of R with finite preci-
sion. It has been known among some com-
puter scientists since the 1970°s that p-adic
numbers (e.g., elements of Q,) — where, from
Ostrowski’s theorem, we know that Q, and R
are the only completions of Q — admit exact,
unique representations with finite encodings.
(Examples of precedents include the so-
called "Hensel codes" of Krishnamurthy et al.,
the work of Horspool-Hehner, and Doris” sys-
tfem for exact p-adic arithmetic in Magma.)

Unlike the above precedents, Hensel is an
architecture, rather than an algorithm or
software package. Thus, it is designed to
perform arithmetic in Q, at the machine
level, where Q is distinct from all other Q,-.»
in that the coefficients of 2-adic expan-
sions are a; € {0,1} and thus can be writ-
fen in bits. Descending to the architec-
tural level carries several prospective advan-
tages to CPU users. First, users can utilize
a CPU performing arithmetic in Q, at the
machine level without any familiarity with
2-adic arithmetic; operands in Q, can be
expressed - for instance, symbolically - in
user-recognizable form in higher-level pro-
gramming languages. Thus, unlike software
such as Magma, which offers exact arith-
metic to number theorists familiar with Q,, the
Hensel CPU is designed to bring the accu-
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racy and performance of exactness to gen-
eral users. Moreover, by developing a design
to realize exact arithmetic at an architectural
level, SciSci Research and its Future Comput-
ing group endeavor to confront the barriers
posed by floating-point to high-performance
computing (HPC), and help fo realize an ex-
act HPC capability unhindered by tradeoffs
between performance, accuracy, and cost.

1.1.1 Defining Exactness

Although no computing system can over-
come the limitation of computing with fi-
nite resources over fields with cardinalities
of the continuum, computers can be de-
sighed such that the operands over which
they compute are unique; such is the as-
piration of exactness pursued by SciSci Re-
search and Future Computing in designing
the Hensel CPU. Thus, the criterion of exact-
ness is not to be mistaken for the promise
of computability. One will ineluctably en-
counter examples of arithmetic over particu-
lar numbers that the Hensel CPU cannot per-
form within its bit-width (in which case one
will receive an error message, rather than an
approximation), but the architecture is de-
signed such that, when it can perform arith-
metic, it does so exactly. Furthermore, the ar-
chitecture, which is designed fo favor scaling
tfowards supercomputing applications, is ad-
vanced with the aspiration of extending ex-
actness to the largest collection of operands
possible (e.g.. with a large bit-width).

It should be noted that the Hensel CPU is
not entirely untethered from the question of
approximation insofar as its instructions and
operand encodings are developed with the
assistance of software such as Sage and
Magma, which return so-called "lazy" repre-
sentations of 2-adic numbers (i.e., up to a
specified precision). Nonetheless, arithmetic
performed by a Hensel CPU can nonethe-
less remain exact so long as its accepted
operands and instructions are restricted to
those with unique representations that can
be encoded within the CPU bit-width.
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A CPU Architecture for Q,

1.1.2 The Question of Technical Risk

[t should be emphasized that the novelty
of the Hensel architecture resides not in an
argument regarding the prospect of exact
arithmetic, a critique of floating-point, or an
observation that Q, can be used advanta-
geously for exact arithmetic; such arguments
can adlready be found in the literature. The
novel value proposition of the Hensel CPU is
found in its realization of 2-adic arithmetic at
the hardware level. Although a rough de-
sign for the architecture is presented here,
the technicalrisks of realizing novel hardware
(e.g., arithmetic logical units and processor
registers) remain outstanding. Nonetheless, it
should be emphasized that an architecture
for operands in Q,, whose expansion coef-
ficients can be encoded in bits, should be
compatible with extant MOSFET technology.
Such compatibility significantly de-risks the
Hensel CPU prospect relative to other com-
puting paradigms such as quantum comput-
ing, in which case one must develop wholly
new electronics, such as transistors, for com-
puting with qubits. Thus, although the Hensel
CPU will involve new hardware, it doesn’t re-
quire a paradigmatic alternative to current
electronics and semiconductor technology;
it merely requires a new CPU that performs
arithmetic in @, with such technology.

1.1.3 The Prize of Exact Arithmetic

In floating-point arithmetic, real numbers
(i.e.. elements of R) are approximated by
"floating-point numbers”, which are rationals
(i.e.. elements of Q). Reals are given dec-
imal representations, which are Cauchy se-
quences of rationals; in the case of floating-
point, these are truncated to be of finite
precision. Of course, given finite resources,
representations must be finite. The coding-
theoretic issue, in the case of R, pertains to
an analytic issue: real numbers don’t have
unique Cauchy sequences; they can only
be given up to equivalence. Moreover, Risin
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fact a field of equivalence classes of Cauchy
sequences. As a consequence, the ac-
curacy limitations from which floating-point
arithmetic suffers can be seen as a conse-
guence of giving finite-precision represento-
tfions of non-unique approximations of ele-
ments of R. For instance, suppose, given a
bit-width allowing 8 decimal places, one tries
to approximate 1. One cannot distinguish

3

H H 33333333 .
the approximation from 555500000 e repre-

sentation of 1 is non-unique.

In the case of Q,, every 2-adic number has a
unique 2-adic expansion, which is an infinite
series > a;2' (where ze€ Z and a; € {0,1}).
Writing the coefficients of these series, we ob-
tain unique binary representations. One can
compute the exact values of 2-adic expan-
sions of n € @, using the convergent proper-
ties of infinite series with respect to the 2-adic
norm,

nf = 272" (1)

where v, is the the 2-adic valuation
v :Q = Z U (i.e., oo in the case of n =0).
For instance, the following series for 1 € Q,
convergences with respectto | |s:

14+2(1+22+2%+..) )
2

=14 ——
+1—22

as is the case for 1 € Q,:

5
14+22(1+2* + 28+ . )+
2 (1+20+28+..)

22

1o

)
=1

As discussed in this report, in the case of the
Hensel CPU, the crux of its value proposition is
computation with finite, efficient encodings
of 2-adic expansions in a manner that pre-
serves unigueness and hence, exactness.
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1.2 Report Scope

With reports on the Virtual Hensel, load-store
architecture, and 2AALUs now published, the
role of this original report on the Hensel CPU
can now be lent greafer context. It is not
a reference on how the computing with the
Hensel architecture works. The Virtual Hensel
report was written to provide and explain
the Virtual Hensel as an elementary proof-
of-principle demonstration of exact compu-
tfation with the Hensel architecture. As a
complement to the Virtual Hensel report, the
2AALU report and load-store report offer a
(relatively short) overview of how arithmetic
and load-store are performed at the level
of circuit design and combinational logic.
Nonetheless, these two reports, with great
regularity, refer back conceptually to this re-
port. Moreover, both the Virtual Hensel, load-
store, and 2AALU reports, very much pre-
occupied with the practical details of gen-
eral exact computing capability, seldom dis-
cuss matters to do with p-adic analysis or
@, which are very much cenftral to this re-
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1 (e, 13340 ic{13...49}), & (e

,i€{2,4,...50}), and % (efc.) as one increases i.

port. Thus, this original report serves, and
is expected to serve for some time, as a
prerequisite tfext on the Hensel architecture
in a manner that guides the reader from
topics in pure mathematics such as 2-adic
expansions, Cauchy sequences, and non-
archimedean distance to features unique
fo the Hensel architecture such as FC en-
codings, 2AALUs, nested carrier packaging.
x-addresses, and distributed load-store. In
many instances, this report stops short of ex-
plaining how architectural features — imbri-
cating computer engineering strategies with
number-theoretic affordances - are realized
in practice as computing capabilities, in-
stead remarking that the reader can refer to
the Virtual Hensel, load-store, and 2AALU re-
ports.

The most rudimentary objective of this re-
port is to infroduce how 2-adic numbers
are to be stored and operated upon in the
Hensel architecture. This requires a coding-
theoretic description of 2-adic operands, a
data-structural description of how they are
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stored, and a logical-functional description
of how they are subject to arithmetic opera-
fions. Inlight of the novelty of a CPU architec-
ture designed for Q,, it is necessary to proffer
this description in a manner that begins with
p-adic analysis and proceeds to computer
engineering. With the intersection of these
disciplines relatively empty, it is necessary
to begin at a fundamental level, describing
operands and operations at the level of lists
and functions. Doing so will involve relatively
simple mathematics but a moderately so-
phisticated regime of notation for assigning
mathematical descriptions to the architec-
tural components of the CPU.

The Hensel CPU architecture is designed for
aload-store instruction-set architecture (ISA).
This first report is infended to preliminarily in-
froduce the architectural features, especially
Hensel processor components, whose load-
store roles are most integral. Thus, the report
will dedicate particular attention to process
registers and arithmetic logical units, as well
as the architectural properties with which
their design is endowed for 2-adic comput-
ing. This report intends to describe their de-
sign and function, as well as characterize
(and provide mathematical proofs of) prop-
erties anticipated to be of utility in HPC.

Looking ahead, beyond the rudimentary
presentation given here, more rarefied archi-
tectural descriptions — including ISA, microar-
chitecture, and implementation — will each
be given their own subsequent reports. This
report is the first of what will be a Hensel series
by SciSci Research and its Future Computing

group.

2 Novel Architectural
and Coding Features

This report introduces, in addition to sev-
eral components of the Hensel CPU archi-
tecture, standards used by SciSci and Future
Computing for representing 2-adic numbers
and instructions (comparable in purpose to
standards given for floating-point arithmetic,
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such as IEEE 754-1985). These standards
are necessarily internal, rather than industrial;
that is to say, they are used internally by SciSci
and Future Computing as a coding-theoretic
basis for architectural design specifications.

2.1 Encoding Standards

2.1.1 FC 1-2025 Operand Encoding

This report introduces FC 1-2025 (Future Com-
puting Standard 1-2025 for 2-adic Arith-
metic), a coding standard for 2-adic num-
bers. FC 1-2025 gives an efficient coding
of the coefficients of 2-adic expansions, and
thus provides an exact, non-approximate
encoding of 2-adic numbers (pace the R-
approximations found indelibly in floating-
point arithmetic). That is o say, all n € Qs
whose FC 1-2025 encoding is within the bit-
width of the CPU can be subject to exact
arithmetic. (As discussed in Section 6.2, this
bit-width can be very large.)

2.1.2 FC 2-2025 Instruction Encoding

The second standard infroduced in this re-
port is FC 2-2025, a standard for encoding
paradllelizable arithmetic instructions for exe-
cuting operations on FC-1-2025-encoded 2-
adic numbers.

2.2 The Hensel Processor

Hensel’s arithmetic logical units (ALUs) and
processor registers (PRs) are designed ac-
cording to a novel, nested framework, ac-
cording to which a moderate number of
low-cost ALUs and PRs are assembled into
a cluster, with two key prospective advan-
tages (one afforded by nesting and the other
by clustering). First, the nested structure is
utilized for optimizing storage of FC-1-2025-
encoded operands in the PRs and execution
of FC-2-2025-encoded instructions by ALUs
due to the correspondence between this
nested structure and the relationships be-
tween 2-adic numbers. (For instance, note
that the distance between 2-adic numbers
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The Hensel Processor

is non-archimedean; rather than forming a
'number line" like the case of R, it forms a
nested structure.) Second, clustering allows
for parallelization of the optimal storage and
computing capabilities made available by
nested design.

2.2.1 2AALUs

2-adic arithmetic logical units (2AALUs) are
arithmetic logical units that perform arith-
metic in Q, in parallelized fashion.

Inventions No. 1, Version 2.4
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2.2.2 PR Cluster

Processor registers are also designed in a
cluster, Zpgr. Operands are stored in the pro-
cessor (and main memory) in FC 1-2025 for-
mat according to a triple-tfree convention
discussed in this report. The individual PRs
in =Zpr. coordinating with the load-store unit
(LSU), are instructed by the conftrol unit (CU)
to supply operands to =pg for parallelized ex-
ecutfion and to receive outputs.
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NOVEL ARCHITECTURAL
The Hensel Processor AND CODING FEATURES

CPU

Processor
Register
Cluster

Figure 2: Block diagram of the Hensel CPU, processor, control unit (CU), load-store unit (LSU),
and main memory, highlighting 2AALU and processor register cluster relations. (For simplicity of
presentation, in- and outgoing arrows with respect to the the CU are omitted.)

Inventions No. 1, Version 2.4 7127



3 FC 1-2025

3.1 A Quick Review of 2-adic
Expansions and Coefficients

Recall from p-adic analysis that a 2-adic
number (n € Q) admits the following expan-
sion

n:= Z Eli2i7 a; € {0, 1}, zeZ 4)

These unique expansions give exact sums
owing to the convergent properties of their
series with respect the 2-adic norm. For in-
stance, in the case of the following,
i i+k i+2k _ 2
a(2'+ 2" 42 4—...)_1_2k ©)
whereas, in the case of R, geometric series
> e, axr® only converge when |r| < 1, it is the
case that 2-adic expansions converge with
respect to |r|, even when |r| > 1. Properties
such as this, as well as the uniqueness of 2-
adic expansions, provide a basis for exact
arithmetic.

For purposes of infroducing the FC 1-2025, we
turn our attention to the coefficients a;. Let’s
revisit the example of % € Q.. The first 20 sum-
mands (including 0 summands) in its 2-adic
expansion are
1 3 5 7 9 11
371+2+2 +2°4+20427 42 ©)
+213+215_~_217+219_~_.“

(Here, the coefficient for 23, for instance, is 1,
whereas the coefficient for 24, for instance, is
0.) We then write the coefficients from right
o left, with an overbar over repeating coef-
ficients. In this case,

1

Z = 011. 7
3 011., (7)

The first 20 summands in the expansion of %
are

1
£ = 1427427420427+ 210 4 21

8)
+214+215+218+219+.“
which can be abbreviated as
1
£ = 001101, %)
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Abbreviations of this kind are encoded ac-
cording to the FC 1-2025 standard as follows.

3.2 FC 1-2025 Encoding

We begin by taking the coefficients a; of a 2-
adic expansion sequence of a given n € Q,,
which will be ordered from right to left. The
coefficient-list-form S of the sequence for the
2-adic expansion of n € Q, is as follows:

S(n):(3007"'7a15307-~-aaz+17az) (]O)

The FC 1-2025 encoding of a given n € Q;
consists of finite sublists of S(n) which sfill give
a unigue encoding:

FC(S(n)) := (L,Rec, L, Lec, L, Tec) an

Rec is the sublist of repeating coefficients in
the 2-adic expansion (e.g., 0011 for ). Non-
empty Rgc encodings always begin with a
1, and are of length >2. (For instance,
Rrc(—1) := (1,1).) Generally, for all sublists,
sequences of 0's — e.g., for integers — are
tfreated as empty Rgc encodings.) Lgc is the
sublist of non-repeating coefficients to the
left of the "decimal’ point (e.g., (0,1) for the
case of $), and are minimized so as to not
include repeated entries in Rgc, but are writ-
ten so that Rgc can begin with a 1. Tgc is the
sublist of coefficients for summands with neg-
ative exponents, typically written to the right
of the "decimal point" (e.g., 1inthe case of 1,
which is written as .1,). L is the "no operation”
symbol separating R, L, and T. For instance,

FC (S (;)) =(L,(0,1), L,(1),L,0)) (12)
To take another example,
(o)) -
(L,(0,0,1,1),1,(0,1),L,() (13)

Another important example is as follows: by
convention, FC(S(0)) := (L,L,(0),L1). Visual
illustrations of several FC 1-2025 encodings
are given in Figure 3 and Figure 4.
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FC 1-2025 Encoding

FC 1-2025 Encoding: g

R R L

ul
ml

T

FC 1-2025

Figure 3: Array plot visualization (with color legend) of the FC 1-2025 Encoding of 3.

Rational 2-adic Expansion 2-adic Number FC2 1-2025 Encoding
1 41
2 2
1 2 4 o8 3 4 o8 2? 2° 1
= 1421427+ 2%+ )+ 27 (1427 427+ ) =1+ + == 00T101., .j:-:-
5 1-2% 1-2% 5
7 -1 2 4 o8 3 4 o8 -1 ° 2° 7
— 2741427 (1427427 + L)+ 27 (1427427 + ) =27 + 1+ = — 007101.12 B T e e
10 1-2% 1-2* 10
1 2 1
3 1-22 3
3 22 3
° W22 e2e e )=t 2= oo, | T
7 28 7
22 24 25 22
= 242%4+2%(142%42%4 )4 2%(142%42%4 ) =242% —— v S = 0171010.2 I N
1-2 1-2

Figure 4: Table of six 2-adic numbers, their 2-adic expansions, and FC 1-2025 encodings.
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Warm-Up. FC-1-2025 Numbers

3.3 Warm-Up: FC-1-2025 Numbers

As a kind of warm-up tutorial for tudying
finite 2-adic encodings, we’ll consider the
case of FC-1-2025-encoded 2-adic numbers,
a mock standard preceding the FC-3-2025
standard used by the Hensel CPU. One can
think of FC-1-2025 encoded 2-adic numbers
as given by a "triple-tfree" data structure, i.e.,
three binary trees B, By, B3 whose parent
nodes are glued to a common vertex. With
respect to the FC 1-2025 format, Rec(—) data
are stored as By, Lrc(—y as Bz, and Tgc(— As Bs.
(T-form examples for FC (S (35)). FC (S (x)).
and FC (S (g5)) are shown in Figure 6.) Why
is it useful fo start out thinking this way? Bi-
nary tfree encoding assigns each a; in Rec., Lec,
or Tec to a vertex v; € By, beginning with végk,

FC 1-2025

with the coefficient assigned thereto indexed
as ag. Thus, one can think of Rec, Lgc, or Tec as
each stored in a B} as its own 2-adic number
(beginning to the left of the "decimal point"
at ap), though nevertheless together giving
an FC-1-2025 encoding as a triple-tree dato-
structure. (Beginning each B;; encoding with
ap eliminates the need to encode Tgc using
negative indices, which is of consequence
for max (A%) parallelization, as discussed sub-
sequently.) This free-structure warmup also
conveys the notion that the individual Rec,
Lrc, or Tec blocks can be regarded as their
own number, and indeed, this is how FC-3-
2025 numbers are loaded to the processor
Cluster (via a x-ID system discussed exten-
sively in other reports).

R NN K RN o A

Figure 5: Top: an example illustration of 7. Bottom: the same illustration of 7 highlighting 55, B3,
and B;. Note that these graph embeddings, for simplicity, collapse v, onfo vfz.

Inventions No. 1, Version 2.4
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Warm-Up. FC-1-2025 Numbers

FC 1-2025

Rational Triple-Tree Form FC 1-2025 Encoding
- B BT T .
12
9
Py [ T T
20
47
— N 5 EEEEE
60

Figure 6: Triple-tree plots for three FC-1-2025-encoded 2-adic numbers. (Here, the embeddings

separate v, from the v5'.)

Inventions No. 1, Version 2.4
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4 The Processor

4.1 The Processor Register Cluster

The Hensel CPU architecture features a novel
processor design, which is that of a cluster
composed of smaller units (i.e., small, low-
cost PRs), belonging to a processor register
cluster =pr with a nested structure.

Processor  registers, being distributed
throughout the cluster, are loaded in dis-
fributed fashion by “loaders", or small units,
collectively comprising part of the load-
store-unit (LSU), that load operands to the
appropriate registers in the cluster. The clus-
ter is compartmentalized, with each com-
partment housing a loader. Loads to (or
reloads between) registers handled by load-
ers operating concert in the LSU circuit. Each
compartment is packaged in a carrier, with
carriers packaged in nested fashion (whilst
still being directly surface-mounted) in corre-
spondence with the topology of the LSU cir-
cuit (as described in the load-store report).
Loaders in the ciurcuit feed their outputs to
one another, with the carriers of the loaders
that they feed packaged within their car-
riers, recurrently, such that the carrier of a
given loader at level ¢ feeds its output to an
loader at level ¢ — 1 whose carrier is pack-
aged within its own carrier, as visualized in
Figure 8. The term 'level" refers, technically,
to the level in the processor circuit tree in
which the loader is situated, with a carrier
for an loader at level ¢ — 1 packaged within
the carrier of the ¢ — 1 loader that is its par-
ent node in the circuit free. (See the load-
store report for further details.) The =pg is A
collection of clustered processor registers,
Cpr. Whose containers are packaged in the
lowest-level cluster carriers, as shown in Fig-
ure 7. Thus, the overall cluster consists of
nested-packaged loader carriers, with pro-
cessor register carriers packaged at the in-
nermost level. Loaders positioned at differ-
ent levels can modify different a;, and, do-
iNng so simultaneously at different levels, par-
dllelize loader operations. This is achieved
via execution of FC-2-2025-encoded instruc-

Inventions No. 1, Version 2.4
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tions, as discussed subsequently.

Operands are loaded to =pg in distributed
fashion. Given the T-form of a given
FC(S(n)), the individual B} are loaded to dis-
finct clustered processor registers in Zpg. The
PR cluster consists of a master PR, Mpgr, Qs
well as clustered PRs, written as Cpr. Together,
they comprise the =pg, which we write in no-

tation as a set of PRs Zpg := (Uif‘zflchi) U Mpr

(where N < 2B, with B being the architec-
ture bit-width). The individual B; are loaded
to specific Cpg according to individual en-
coding blocks called x-IDs, discussed later in
this report (and to greater effect in the Vir-
tual Hensel report). A given x-ID is loaded to
the Cpr Whose address matches the x-ID en-
fries. Mpr is responsible for reassembling ("re-
compounding") these individual blocks back
to a whole operand for storage purposes.
Each Cpr is loaded via receipt of an "activa-
fion input", which we’ll term a w-sequence,
issued by Mpgr as prompted by the LSU. A
m-sequence both activates a given Cpg and
encodes information about the kind of y-
ID to be loaded (e.g., for a Rec, Lgc, OF Tec
block). Thus, to load an operand, the Mpgr
loads the x-IDs of its constituent blocks to the
address-matching Cpr, and tells the Cpg What
kind of block is being loaded. Operands
can be reassembled ("recompounded") with
this information. The operands can also be
subject to arithmetic operations, resulting in
new x-IDs, which are loaded to new Cpg With
matching addresses, and recompounded
by the Mpg to obtain the output.

The LSU, via its loaders, performs load-store
on operands stored according to paralleliz-
able instructions. Given some FC(S(q)) sub-
jectto an arithmetic operation . yielding out-
put 1 (FC(S(q))) these instructions amount to
modifying the FC(S(q)) address-matching x-
ID in order to obtain the address-matching x-
ID for the output FC(S(x(q))). The instructions
guide the loaders at nestlevels 2 </ < £ -1
in modifying the x-ID entries in parallel, where
modifications of coefficients at lower i are
performed by A,; af lower ¢ (i.e., inner-
most in the nest-structure) and greater i by
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Ay at greater ¢ (i.e., outermost in the nest-
structure).

4.2 Nested-Clustered Design

In the Hensel architecture, each cluster is fo
be physically designed in nested form. From
an engineering perspective, one can build
carriers of differing sizes and mount them
to the printed circuit board with carriers at
lower levels packaged within carriers at lev-
els, as shown in Figure 7. The process register
carriers are, in turn, to be packaged inside
the lowest-level cluster carriers, and thus the
most deeply nested within the carrier pack-
aging structure, as shown in Figure 8. It is this
choice of inter-carrier packaging that gives
the nested structure of the processor. (See
the load-store report for further discussion.)

A cluster of nest depth L is designed so that,
proceeding from the innermost loader level
¢ =2tolevel £ — 1 (with level 1 storing the =pg
and level £ storing the Mpr/ M sy), there are
254 loaders {&oc-¢,...,&1} at each level
¢. Each carrier at level ¢ will contain 2 level-
(¢ — 1) loader carriers (with the exception of
the & j, whose carrier packages the the Cpr
carriers) and will be packaged alongside an-
other carrier by a carrier at level ¢+ 1 (with
the exception of {€,_11,&-12}. Which are
packaged within the Mpg carrier). We can
describe the nest structure of the register
cluster in terms set membership, where, as a
shorthand, &,; = {}¢;. With this shorthand, we
can write the nest structure as follows, begin-
ning at ¢/ = 2 and moving outward by ¢ + 1:

{}eg1j = {{{{}m} A} (@=1)2
J (e ey (—1)12°

{hy={{1{} (4

Inventions No. 1, Version 2.4
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4.3 Cluster Load-Store
and Addressing

Operands are subject to load-store in dis-
tributed fashion, with the Rec(s(—)). Lrc(s(—))-
Or Trc(s(—y) Plocks of an operand’s encod-
ing each loaded to a different Cpg. As de-
scribed in greater detail in the Virtual Hensel
report, IDs, called x-IDs, are generafted from
these individual blocks, which are similar to
the blocks themselves, but subject to a few
coding fricks that permit a sizeable guan-
tity of blocks to be subject to load-store by
a relatively small number of processor regis-
ters. The address 21 assigned to a given Cpg
is simply the x-ID of the RFC(S(f))I LFc(s(,)),
or Trc(s(—)) encoding block load that it ac-
cepts. We denote a Cpr with address 20 as
Cer (). Thus, distributed load-store is a mat-
ter of ID-address matching (i.e., x-2 match-

inQ).

A given Cpr is loaded by activating it with
a w-sequence, which contains an encod-
ing that distinguishes the x-ID by its block
type (i.e., Recis(-)). Lrcis(—)), OF Tecs(-))
such that an operand, although being sub-
ject to load-store with its encoding broken
down ("decompounded") into its constituent
blocks, can nonetheless be recovered ('re-
compounded"). The LSU instructs the Mpg 1O
load a Cpr as follows:

A (x,m) — Cpr () (15)

The A mapping, as written above, is in fact
a simplified description of what is done in
practice by the loaders. See the Virtual
Hensel report for a finer description of loads,
and the load-store report for a finer descrip-
tion of re-loads, which are applied to output
operands.
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(a) Clustered View (b) Exploded view

Figure 7: lllustration of the nested structure in the register cluster.

NN NN SN SN NN/EN NENNN @ NN NN NN NN NN NN §N NN
AR NR NNEN | (NN(NN) (NN/NN| (NN EN| NN/EN| (NN NN 6E W
NN NN N NN & NN/EN NNNN NN NN NN NN NN NN EN NN
MRNN| NN/ | NNNN (NN)NN| & (N§/NN) NN/EN| (NN NN W§ W
NN SN SN NN/EN NN NN NN NN NN NN NN NN EN NN
MR NR/ NNNN | (NN(NN) (NN/NN| & (N§/EN) NN/EN| (NN NN AE W
NN NN SN SN NN/EN NN NN @ NN NN NN NN NN NN NN NN
MR NN/ NNNN | (NN(NN) (NN/NN| & (NN/EN) NN/EN| (NN NN 6§ W
NN NN SN SN NN/EN NENEN @ NN NN NN NN NN NN §N NN
MR NN NNEN | (NNNN) (NN/NN| & (N§/EN) NN/EN| (NN NN 6E W
NN SN SN NN/EN NN NN @ NN NN NN NN NN NN NN NN
RN/ NNEN | (NN(NN (NN/NN| & (NE/EN) NN|EN| (NN NN 6E
BN NN NN NN NN NN ENEN 6N NN NN NN (NN NN NN NN
MR NN NNNN | NNNN (NN)NN| & (N§/NN) NN/NN| (NN NN 6§ W
NN/NN NN BN NN NN NN NN SN NN NN NN NN NN NN AN
MR NN/ (NNNN | (NNNN (NN)NN| & (N§/NN) NN/EN| (NN NN 6§ W

Figure 8: Cluster distribution of Cpr at the innermost level of the register cluster. (Note that the
number of nested layers in this example is greater than in Figure 7, simply for purposes of visual
variety.)
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Figure 9: lllustration of the correspondence between B;-form tree structure and Cpr Cluster po-
sition. In this and other similar illustrations, the Cpr are positioned at the "top", with layers "below"
being loader layers. Here, the top-most layers is nest-innermost in the cluster (i.e., at level £ = 1)
and the bofttom-most layer is nest-outermost in the cluster (i.e., at level £ = £ — 1).
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5 Parallelization

5.1 Parallelization

2AALUs perform arithmetic in parallelized
fashion. For instance, in the case of dyadic
addition, operations on each pair of entries
in the two x-IDs of the operands are done in
parallel. Arithmetic is thus reduced to a two
step process: parallelized arithmetic without
"extra digits" (i.e., from carrying), done in par-
allel, and a second step for adding extra
"digits" if necessary, which is also done in par-
allel. Finally, a computation of an FC-2-2025
instruction is performed in order to guide the
LSU in handling input and output operands
in the register cluster. The 2AALU report de-
scribes the above arithmetic procedures in
greater detail. We will now attend to load-
store.

5.2 Parallelized Load-Store

FC 2-2025 instructions guide the loading and
reloading of operands in the register clus-
ter. For aload, the instructions direct the LSU
loaders to load the relevant operand y-ID o
the register with the matching address. Inthe
case of a reload, the FC-2-2025 instructions
tell the loaders, which entries in the address
need to be changed.

5.3 FC 2-2025 Encoding

Modification of entries in x-IDs is noth-
ing more than mere bit-flipping (e.g..
(1,1,1) = (1,1,0)). Indeed, as discussed in
the load-store report, at the circuit level,
modifications are executed in combina-
fional logic by a given loader by changing
the input value (i.e., 0 or 1) for the logic gates
at a particular level. At times, it is expedient
to elide discussion of combinatorial logic and
instead denote loader operations in ferms of
"hop calculus", which, rather than explain the
circuit-level combinational logic underpin-
ning loader operations, describes the effect
of loader modifications, due fo their effect
on a given x-ID, on corresponding changes

Inventions No. 1, Version 2.4
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in Cpr to which the x-ID will be loaded. In-
deed, a single loader modification can alter
a x-ID such that its new address-matching
Cpr is located in a notably different location
in the processor cluster. However, because
Cpr are located at the ends of the circuit in a
specified manner (as discussed in the load-
store report), the change-in-address conse-
qguent of loader modifications is predictable,
and very much related to the nofion of 2-
adic distance. A change-in-address can be
thought of as a "hop" across the processor,
and the loader modification a "hop opera-
fion".

Each loaderin the LSU circuit performs an op-
eration and passes its output = to the next
loader downstream in the circuit tree. A
loader can pass a 7 via two kinds of hops. Be-
cause each loader in the circuit tree (at level
¢>2) has two children, i.e., {&.,,&u} (and
because, accordingly, each loader carrier
at level ¢ + 1 packages two loader carriers
at level ¥), it is the case that + can be passed
according to one of two hops:

Thz : .A“ — .Ag7|| (]6)

or B
ThZ : Ag’“ — AN (]7)

Hereafter, we will write them simply as h and
he¢, with 7 implicit. (Alternatively, the loader
can perform no operation: a non-hop hy )

The standard encoding for hop instructions,
FC 2-2025, is as follows:

(L, Br, L, P, L, Br) (18)

where Qg is a sublist of instructions for Rec; B,
for Lgc; and B, for Tec. The elements popu-
lating these B, sublists are hf and hf (as well
as h;) where h? is encoded as (0,1) and h7 is
encoded as (1,0). (Additionally, a non-hop is
encoded as (0,0).) Each instruction is in turn
separated by a L.

FC 2-2025 encoding can be applied to in-
structions for addition, subtraction, multipli-
cation, or division operations whose inputs
and outputs are n € Q, within the allowed
bit-width, with the advantage of forgoing
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operations such as carrying in carry arith-
metic; the loader just perform modifications
according fo stored instructions. In prac-
fice, the Hensel performs arithmetic on x-IDs,
which are encoded according fo the FC-3-
2025 standard, as infroduced in the Virtual
Hensel report. In this report, for introduc-
tory purposes, we'll consider arithmetic on
FC-1-2025 encoded operands. (We'll write
"FC* 2-2025" to describe instructions on FC-1-
2025 encoded operands, since, in practice,
they are encoded for x-IDs.) For instance,
recall that the FC 1-2025 encoding for % is
(1,0,1,1,1,1). Adding $ and } is encoded
in the following FC* 2-2025 instruction:

(L,1,(1,0),1,(0,1),L,(0,1),L,(0,0),L,L,
(0,1),1,(1,0),L,(1,0), L,(0,1),
L) (19

To be more precise, this instruction per-
forms a modification on FC(S(3)) and re-

tuns FC (s (ut+4) (3))) = FC (S (§)).

However, for purposes of evaluating paral-
lelization performance, it is convenient fo
write FC(*)-2-2025-encoded instructions in
parallelized form, or PB-form, where the -
form of a given B _, instruction list for a mod-
ification u(FC(S(q))) is given in terms of hop
calculus. It is no more than a list # of h{ ™ in-
structions, which are written from right to left
for loaders fromlevels ¢ =2to (= L — 1.

B (1(FC(S(a)))):=H
~ ()

where L —-1>m. Thus, a parallel
computation  performing a modifico-
fion p (written P(=(u(—)))) of depth
® = Length (H) = m — 1, will execute (m —1)-
many hﬁ’) operations. When y-modification
is performed for Rgc, Lrc, or Tgc, each is
freated as a separate number and, each
having its own P _,, has its own P-form, with
x entries beginning at ag and operations be-
ginning at hé’).

Inventions No. 1, Version 2.4
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5.4 Parallelization and
Non-Archimedean Distance

Hensel’s nested structure is designed to op-
fimally store, and efficiently compute with,
numbers in Q, in a manner commensurate
with 2-adic arithmetic. For instance, the
Hensel processor efficiently maximizes 2-adic
output-operand distance over minimal oper-
ations because its nested structure is com-
mensurate with 2-adic distance, which, un-
like the archimedean case of R, which is
given with respect to a number line, isinstead
non-archimedean and gives a nested struc-
ture; the PR cluster is designed according to
this structure.

Given the nested structure of the cluster,
a hop operation affects, at level ¢ =1, the
board location of the output-ID-matching
PR. Change-in-location is more distal when
hops are performed at higher ¢ than at lower
£. Whereas at lower ¢, hop operations can
be performed all the while remaining nested
within the same loader packaging at higher
£, hops at higher ¢ in turn also affect all lower
¢, due to nested packaging. Thus, one might
suppose that the greater ¢ is, the greater
the effect of a hop operation on the out-
put. This would be rather inefficient, as it
would imply that clearing greater arithmetic
distfances require w-sequence passing over
greater board distances. However, with re-
spect to 2-adic distance, one finds the oppo-
site to be the case: the lower-¢ hops have the
greatest affect on the output. This is a con-
sequence of triple-tfree data-structure and
nested-clustered design.

Recall the 2-adic distance between p, q € Q»:
lq = plo = 272977 @21
where v, is the 2-adic valuation. Given an

operand g and output u(q), we'll denote the
2-adic output-operand distance as follows:

A% (q) == |u(q) —al2 (22)

Let’s consider, in the parallelized case, the re-
(=)
lationship between A (—) = ST AN (—)
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and D (H), the parallelization depth. No-
tably, greater © (H). requiring hé’) at ever-
greater ¢, probes smaller 2-adic distances per
hﬁ’) operation, or to be more precise:

max (A;‘ff_) (FC(S (q)))> ~ ﬁ%) 23)

Thus, for greater © (), the upper bound on
AQE ) decreases with each additional level.

For instance, modification of ag has the
greatest effect on AY. Consider the case
of gq=1 and pu:=(+,1). In this case,
APV (1) =20=1. This only involves mod-
ffication of ag (thus, ©® =1). Or, consider
the case of a;-modification: take the case
where q=1 and p:=(+,2). In this cose,
AST? (1) =2"" =1, a smaller distance. Of
course, modification of ag can affect smaller

PARALLELIZATION

distances too. For instance, if ¢ =32 and
= (+,1), then AL™3? (1) =25 However,
there is no modification of a;~; that gives a

(=)
distance Agf > 20 (see Appendix).

At first glance, the above statement may
seem surprising, for, in the usual case of a;-
modification, one can indeed obtain values
A5 > 1 when negative exponents appear in
the 2-adic expansion of the operand or out-
put, that is, coefficients to the right of the
‘decimal point'. However, -form encod-
ings give instructions for 7-form FC-1-2025
operands, which are of B; structure. Tgc en-
fries, which do correspond to negative expo-
nents in a typical 2-adic expansion, are en-
coded in B3 beginning with a; and thus non-
negative. T-form abolishes index-negativity
and thereby bounds output-operand dis-
tance to 0 < A} < 1 (see Appendix).

Nest Level 3

Nest Level 2

Nest Level 1

Figure 10: Table highlighting, per level, the loaders a hop can reach (in light blue) and the PRs

they can reach (in dark blue).
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Max (A;f) Parallelization

5.5 Max (A22> Parallelization

(=)
If we look at A3t per level ¢, i.e., per Age ,

we find that the inner-to-outer level execu-
tion of right-to-left-indexed §-form instruc-
tions necessarily maximizes, relative to depth

(=)
D, the distance Agz that can be cleared
per level ¢, as shown in Figure 11. As
a consequence, given some A,; perform-

(
ing a hg’) hop, max (A22 ) is greater than

(=)
max <A2‘>2 ) (See the Appendix for further

discussion.)

PARALLELIZATION

Such is advantageous for parallelization, as it
means that A, ; are maximally level-efficient,
per ¢ (and with respect to D), in bringing the
operand to the output value. Thus, the ©
values for parallel computation can readily
be minimized by following the principle of

D-minimization through AQE’ )-moximizo’rion,
where ©-minimization necessarily minimizes
the number of loaders involved, and is thus
a benchmark for parallelization efficiency.
The relationship between nest level execu-
tion of FC 2-2025-encoded 3 instructions is
illustrated, for some rudimentary cases, in Fig-
ure 12.

Output-Operand 2-Adic Distance by Cluster Nest Level
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\\\\\\\:\\\

\\%
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(=)
Figure 11: Plot showing possible Agf values per ¢ level, where 2 < ¢ < 14,
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Sum FC 2-2025 Instructions Loader Operations
Operand: 1 hg, hg Output: 2
[TT7] T1T11 [TT7] 111
1+ I N BN | HHHH,
[T 1111 [T 1111
[ 1] 1T 1T
| | TTT TT 11
IJIIglllI an 11T
[T 1]
Operand: 1 hg Output: 3
[TT7] T1TT11 [TT7 111
+2 | N N TN | B SReEERES
[T 1111 [T 1111
111 1T [T1]
IJIIglllI llllilllll
Operand: 3 hg, hg Output: 0
[TTT] 111 [TTTT 111
3-3 | N NN BN | H
[T 1111 [T 1111
111 111 1T
I\II_III\I \III_I\II
[ 11 1T
\Jllill\l

Inventions No.

Figure 12: Elementary visualizations of FC*-2-2025-encoded instructions.
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Figure 13: A sp-form "instruction table", where the columns are Cpr Whose y-addresses are the
T-form FC 1-2025 operand inputs {0,1,2,3,4,5,6,7} € Q,, and the rows are the same Cpr Whose

x-addresses are taken as outputs. Shown in the table are the hf) operations in the instructions
that return each output from each input.
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Constraints on Optimization

5.6 Constraints on Optimization

Although parallelization lends the efficiency
of simultaneity to computation, and the
max (A%) property makes operations at each
nest level economical, there must necessar-
ily exist constraints on parallelization optimal-
ity, which should be articulated so as to meao-
sure performance relative thereto. The key
constraint, of course, is a depth constraint:
certain computations will require many par-
allel operations. Depth costs are incurred
when operands and outputs are many hops
removed from one another in Zpg, which will
ineluctably require parallelized computation
involving several loaders to effectuate hops.

As an example, let’s consider possible val-
ues of g, namely {0,1,2,3,4,5,6,7} € Q,. Let’s
also consider 8 values for u(q), which will also
be {0,1,2,3,4,5,6,7}. Figure 13 provides a
table showing the H needed to obtain a
given T-form of B (= (FC(S(u(q))))) from the
T-form of FC(S(q)). The following 8 x 8 matrix

PARALLELIZATION

gives the © (H) values for each:

01121223
102121 3 2
12012 312
21103221
M= 122 3 011 2 (24)
21 3 21021
23121201
32212110

Note that entries in M near the left-to-right
diagonal are small, whereas the opposite is
true for the right-to-left diagonal; in the latter
case, the operands and outputs are stored
in Cpr that are hop-distal from one another
in the cluster. The values near these diag-
onals are sufficiently disparate such that if
one interpolates a surface X from the ma-
trix (i.e., with coordinates (i = q,j = p(q), Mi;)).
the gap between high- and low-D (H) along
the diagonals gives a hole in the surface (see
Figure 14). Heuristically, one can think of this
"topological invariant" in the interpolated sur-
face as exhibiting the difference in © (H) be-
tween hop-proximal and hop-distal Cpg.

Figure 14: A 3D plot of X seen from two viewing angles.
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6 Further Prospects

6.1 Error Correction and
Fault Tolerance

With the prospective advantage of Hensel
CPU architecture being exact arithmetic, a
design that ensures checks against com-
putational error, and is resilient to com-
putational faults, is of paramount im-
portance in delivering arithmetic perfor-
mance. Sketched cursorily are some Hensel-
architecture-compatible mechanisms for
delivering error correction and fault foler-
ance. These sketches are all inefficient but
give indications of the kind of mechanisms
that can be developed.

6.1.1 Error-Checking with (y, r)-Payloads

Error detection for operand encoding can
be performed by taking advantage of the x-
ID system. Suppose a given encoding block
is mis-transmitted (e.g., between a Cpr and
an A, between the A and My, etc.). Be-
cause the process begins by sending the
appropriate x from Mpg 1o the appropriate
Cpr. ONe could readily implement a check
for operand-transmission consistency during

Faulty Computation

0.500 -

0.100 -

~ou 0.050F

0.010 -

0.005}-

4 S 0.050F

Nest Level
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LSU operations by requiring that the load-
ers involved continue to transmit x in their
payloads by requiring that + payloads be-
come (x,7)-payloads, in which case FC-1-
2025-form errors could be easily detected
and located.

6.1.2 Al Trajectory-Defect Checks

Because loaders at a given nest level £ can
perform computations that affect Ay by a
certain 2-adic distance, an error in computa-
fion or transmission at any given level ¢ will be
evident if it effectuates a change in u(q) be-
yond the A4 range permissible for that level
£. Figure 15 gives an illustration.

6.1.3 LSU Consensus

One could also, albeit at the cost of effi-
ciency, implement a distributed-consensus
framework within the processor itself, namely
by employing an odd number of redundant
clusters whose outputs are sent to Mpg upon
clearing a vote. Note that such a process
does not jeopardize parallelization, for the re-
dundant LSUs could compute in parallel with
respect to one another.

Fault Detection

0.500 -

0.100 -

0.010 -

0.005 -

Nest Level

Figure 15: lllustration of A4 frajectory-defect detection.
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Supercomputing

6.2 Supercomputing

The register cluster is designed so that it can
implement multiple F-2-2025 encoded H in-
struction lists simultaneously. That is to say, the
‘H operations are executed in parallel and,
what is more, multiple H instruction lists can
themselves be executed in parallel. Given
an instruction superlist

M= (H) (25)

the upper bound on Length (M), the number
of H; that can be executed simultaneously,
is comparable to the number of loaders in
the cluster (since, in the most efficient case,
each loader is performing an operation at

FURTHER PROSPECTS

any given time). Because in the case of
FC-3-2025 encodings each operand is bro-
ken into blocks are loaded to four registers,
the number of permissible parallel operations
would be

262

max(M) = NREZ )]

(26)

Thus, a processor cluster with a depth of
L—-2=15 would be able to handle as
many as 10'° operands at once. (Figure
16 shows a cluster of depth slightly lower.)
One would then just need enough 2AALUs.
L —2 =17 should cross the zetaXOPS perfor-
mance threshold, as shown in Figure 17.

Figure 16: A register cluster of level depth £ = 13.
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Supercomputing FURTHER PROSPECTS

Max XOPS by Cluster Depth

251

| — Hensel
- — ExaXOPS Threshold
1 —— ZetaXOPS Threshold

Maximum Exact Operations Per Second (XOPS)

! . I 1 1 1 I L I 1 i I L I i
0 5 10 15

Cluster Depth

Figure 17: Best-case prediction of the cluster depth required for exaXOPS and zetaXOPS com-
puting performance. (Here, "Depth" refers to the £ (minus 2 value.)
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APPENDIX: PROOFS OF HENSEL PERFORMANCE PROPERTIES

7 Appendix: Proofs of Hensel
Performance Properties

Theorem 1. For every B-form instruction list
with output-operand distance A}, it is the

(=)
case, forall2 < (<D (M), thato < AY <1,

Proof. B3-form instructions are given for com-
putations on 7T-form FC-1-2025-encoded
operands, which are stored as B; (where Rec
is stored as By, Lgc is stored as B;, and Tgc
is sfored as B}). For a given n € Qy, it is the
case that its 2-adic valuation v,(n) can be
negative — namely, when its 2-adic expan-
sion includes negative exponents — such that
the 2-adic norm |n|; > 1. In FC 1-2025, the
coefficients of summands with negative ex-
ponents are encoded in Tec. However, be-
cause T-form encodings assign the entries
in Trc o their own binary free B, which be-

gins its indexation at vq (also written vf ;), the
entries in Bj-encoded Tgc are indexed be-
ginning with ag. Thus, Rgc, Lgc, and Tge, in
triple-tree format, can be encoded as 2-adic
numbers to the left of the "decimal point”,
that is, as coefficients for summands in 2-adic
expansions with non-negative exponents. In
this case, the 2-adic valuation v,(n) is non-
negative because it takes the value of an ex-
ponent k € Z U oo such that a rational n € Q
can be written as n=2x 2 If all expo-
nents in the 2-adic expansion of n are now
non-negative, then k must be non-negative.
Thus, if vo(n) is positive, then 0 < p~2(M <1,
where |n|, = p~2(",  With 2-adic distance
(and therefore A5 too, by definition) thus
bounded to 0 < | |» < 1, it is the case

that a hop operation h{™ cannot clear an

output-operand distance outside of the val-
(=)
ues0 < Ap <1, 0

Theorem 2. Comparing, at each ¢, the maxi-
mum reduction in 2-adic output-operand dis-
fance A} (FC(S(q))) between FC(S(q)), an
FC1-2025-encoded S-form operand, and
FC(S(r(q))). the output of a computation
performing a modification p on the operand,
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where the instruction list H confains opera-
tions (h,(;) o hg’)) to be executed in paral-
lel by loaders in the cluster, it is the case that

max (83 (FC(s(@) ) >
max (83 (FC(s(@) ) @)

forallk where £ <k <m — /.

Proof. In the processor cluster, (-level oper-
ations (for ¢ > 2), with domains A, or Ay,
will modify the (¢ — 1)-th (non-L1) entry in
FC(S(q)). With these entries being FC-1-
2025, S-form encodings of 2-adic expan-
sion coefficients, this modification can af-
fect the final B (FC (S (q))) output by as much

(=)
as max (Agf (FC(S(q)))> =272 (Here, the

exponent is —¢ 4 2 since the first 2-adic ex-
pansion coefficient ap is modified at level
¢=2) Proceeding to /+k, the same ar-
gument applies. A hfzjr)k operation can al-
fer the 2-adic expansion of u(q) relative to
q by as much as 2742, that is to say,

(=)
max (A;“* (FC(S(q)))) —2-0=k+2 |’ frivial

to see that 2=1*+2 <« 2=4+2 for all k where
f<k<m-—V. O

Theorem 3. Given a list H = (hﬁn’)7...,h§’>)
of B-form instructions for the modifica-
tion p of q, the depth © is minimal, ie.,
Length (#) = m — 1 is minimal.

Proof. Let A3 := AT (FC(S(q)))  be
the toftal 2-adic distance between
the output P(FC(S(g))) and input
FC(S(q)). On the execution side, let
(=)
DY (FC(S () = 37185 (FC(S(a))  be
the total output-operand distance cleared
by hop operations at each cluster level /.

At each level ¢ in the cluster, a hg’) operao-

— - (=)
fion can decrease A3 to AF — Agf . Due to
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Theorem 1, no hé;f( operation can decrease
A5 more than a hfg_) operation. Thus, given
0=A35 37,27, aft a given level ¢, a h{”’
operation can reduce A5 by as much as
. _ (=)
(XCre27) — 27472 = max <A§ — Ag"‘ > and,

with operations in # instructions being en-

coded by hé_), there is no smaller level-
respecting list that reduces " 27" fo zero

(=)
using Agf operations than

S ()
max (ZZA;"‘ ),...,
i=0

This list is of length m — 1 and sums to
m - h(—) -
> max (A;A; > =A> A} =0 (29)
j=2

Thus, because the minimal number of op-
erations is ® (H) =m — 1, it is the case that
Length () is minimal. O

Theorem 4. Forevery q € Q», its FC 1-2025 en-
coding FC(S(q)) is unique.

Proof. For a given qe€ Q,, FC 1-2025 en-
codes, in compressed form, the coefficients
a; in the S-form 2-adic expansion >"°, a;2! of
q. which gives a Cauchy sequence (ay),. It
is a well-known theorem in p-adic analysis
that the Cauchy sequences and elements
are unique; they uniquely satisfy the follow-
ing properties:

e 0<, <2"—-1, n2>1
® = Qp_1 (mod 2”*1)

e For a given x € 7Z,, there exists a unique
a, such that [x — a,| <270

FC 1-2025 encodes Tgc and Lgc, which, be-
ing non-repeating, are thus unique due to
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the uniqueness of a;. It remains to show
that the the non-repeating a;, encoded only
once (i.e., without repetition) as Rgc, do not
jeopardize uniqueness. Consider a 2-adic
expansion E of some q € Q,, whose coef-
ficients repeat beginning at a,,, with each
repetitive subsequence being of length L,
such fthat Recse)) = (QwtL-1,---,aw). OnNe
can ask if there could exist some Ric g
such that, despite it beginning with a,
and not containing any repeating subse-
quences, Ric sy # Rrc(se)) (thereby show-
iNg Rec(s(ey) to be non-unique). This would re-
quire an instance in which a,;; —a},_;,, #0
(where 0 <i<L-—1), which would contro-
dict the definition of Ri. ), as repetitive.
Thus, with a; being unique, Rgc are also
unique. Coding-theoretfic non-uniqueness
can, in principle, arise whenever it is possible
to insert arbifrarily many 0 coefficients (e.g.,
in the case of 0 € Q,), but FC 1-2025 protects
against this by forbidding it by convention. Fi-
nally, coding-theoretic collisions arising when
FC 1-2025 encodings use the "same" entries
(e.g.. encoding % with the single coefficient
1 and encoding 1 with the single coefficient
1), are prevented via the use of L separators
between Tgrc and Lrc, which are unique for
each n € Q, due to the uniqueness of a;. [

Theorem 5. For every p,q € Q, and binary
arithmetic operation o, there exists an FC 2-
2025 encoded instruction that fakes q as its
input and p(q) as its output where p := (o, p).

Proof. Because the FC 1 2-2025 encodings
of p,q € Q,, as well as poq € Q, are unique,
there always exists an instruction list of right-
to-left coefficient-modifications that takes
g € Q; as an input and gives poq € @, as an
output. Non-existence of such an instruction
list would contradict the amenability of alll
n € Q. fo unigue 2-adic expansions. Theo-
rem 4 on the uniqueness of FC 1-2025 encod-
ings extends this guarantee of instruction ex-
istence to FC 2-2025 instructions. O
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