
 SciSci Research, Inc. + Future Computing

Inventions N
o. 3

sci-sci.org/2aalus
D

O
I: 10.5281/zenodo.17065633

Hensel CPU Arithmetic Logic Units
Circuit Design for Exact Computing with
2-adic Arithmetic

James Douglas Boyd

http://sci-sci.org/2aalus

SciSci Research, Inc.
Boulder, Colorado, United States
www.sci-sci.org

Copyright © 2025 by SciSci Research, Inc. All Rights Reserved.

Citation Format:

Boyd, J.D. (2025). Hensel CPU Arithmetic Logic Units: Circuit Design for Exact
Computing with 2-adic Arithmetic. SciSci Inventions, 1(3). DOI: 10.5281/
zenodo.17065633

CONTENTS CONTENTS

Contents

1 2-Adic Arithmetic Logic 2

2 2AALUs and Hensel

Processor Arithmetic 2

2.1 Circuit Design . 2
2.2 Combinational

2AALU Logic . 3

3 2AALUs and the CPU 5

3.1 2AALU Packaging and
Nested Design . 5

3.2 ω-Sequence Passing . 6
3.3 Hop Calculus . 7
3.4 Parallelization and Scaling . 8

SciSci Inventions No. 3, Version 1.2 1/8

!AALUS AND HENSEL
PROCESSOR ARITHMETIC

1 2-Adic Arithmetic Logic

The Hensel CPU is being developed by SciSci
Research and Future Computing to realize
an exact computing capability to replace
floating-point computation. Unlike floating
point numbers, which are approximations of
numbers in R, the Hensel CPU performs ex-
act arithmetic in Q2, or, moreover, on finite
encodings of 2-adic numbers. Arithmetic
operations are executed in the Hensel CPU
processor by 2-adic arithmetic logic units
(2AALUs). At the circuit level, 2AALU opera-
tions on FC-3-2025-encoded operands (i.e.,
finite encodings of coe!cients of 2-adic ex-
pansions) are performed via combinational
logic by Boolean logic gates. Indeed, coe!-
cient values in 2-adic expansions are either 0
or 1, as, in turn, are the entries in FC-3-2025
encodings of operands. Thus, exact com-
puting in Q2 with the Hensel CPU is compat-
ible with extant MOSFET technology; 2AALUs
compute in bits with nothing so exotic as AND
and XOR gates.
Previous reports on the Hensel CPU and
Virtual Hensel I, written to introduce and
demonstrate architecture and functionality
(particularly regarding the processor), have
done so at the expense of giving a circuit-
level description of 2AALUs. Instead, for
purposes of convenience, a description of
2AALU operations has been given in terms
of "hop calculus", a higher-level description
of 2AALU operations that abstracts away
circuit-level logic. However, being given
without reference to combinational logic,
previous reports have failed to convey the
simplicity and consistency with which 2AALU
design accords with the rest of the Hensel
CPU. Thus, it is necessary that a resource be
provided on the fine details of 2AALU arith-
metic; the following report is written for this
purpose.
Necessarily building upon previous reports,
the discussion herein o"ers recapitulation of
hitherto-covered topics sparingly. Readers
are encouraged to read previous reports as
prerequisite material.

2 2AALUs and Hensel

Processor Arithmetic

2.1 Circuit Design

The Hensel processor performs exact arith-
metic in a largely parallelized fashion (plus
a small O(n) term). Processor combinational
logic takes place in a circuit involving many
2AALUs. The circuit itself can, with some ab-
straction, be viewed as a tree whose vertices
are 2AALUs.

The multi-level, nested design of the Hensel
processor has been subject to extensive dis-
cussion in previous reports. Often, in discus-
sion of the 2AALU cluster, one specifies its nest
depth, L. For instance, the Virtual Hensel I
processor cluster is of nest depth 5 (+2), i.e., it
has five 2AALU levels and two additional lev-
els (one for the clustered processor registers,
CPR, at level ε = 1 and one for the master pro-
cessor register and master 2AALU, MPR and
MAALU, at level ε = L). At the circuit level, a
processor with nest depthLwill have a circuit
treewith 2+ 2

L→2 vertices (with each tree be-
ing aDAG,MPR being the source vertex, and
the CPR being the sink vertices.)

2AALUs perform arithmetic on operands
according to FC-2-2025 instructions, which
guide the 2AALUs in modifying the entries in
FC-3-2025 operand encodings. 2AALUs per-
form modifications in a multi-level fashion,
with aprocessor of nest depthL = n (+2)per-
forming modifications on length-n operands,
with each entry modified by a 2AALU at a
di"erent level. Thus, each entry is modified
by a di"erent vertex at a di"erent level in the
circuit tree. We write the levels in descend-
ing order, beginning with the source,MPR, at
ε = Landendingwith the CPR sinks at ε = 1. In
terms of level-wise modification, the leftmost
entry in the operand is modified by a 2AALU
at level ε = L→ 1 and the rightmost entry is
modified by a 2AALU at level ε = 2.

2AALUs receive two kinds of inputs. Each cir-
cuit tree includes an initiator input !, issued
from level ε = L, which is always of value 1.

SciSci Inventions No. 3, Version 1.2 2/8

Combinational
2AALU Logic

!AALUS AND HENSEL
PROCESSOR ARITHMETIC

Each 2AALU also has its own modificatory in-
put ”, whose value depends on the FC-2-
2025 instruction for the arithmetic at hand.

2.2 Combinational

2AALU Logic

The first 2AALU is found at level ε = L→ 1. !

sends a 1 to both the XOR and AND gates of
this ε = L→ 1 2AALU. The 2AALU gates also re-
ceive a ” input. One of the gates, fed this
input pair from ! and ”, will give a 1 as out-
put, the other 0. Each gate provides input
for a 2AALU at the next level, giving a tree
structure as illustrated in Figure 1. A 2AALU
is thus a tuple (AND,XOR,”), and the circuit
is a tree built from 2AALUs. The computa-
tion continues downstream of the gate that
gives a 1 output, terminating at a CPR at level
ε = 1. For each 2AALU, the computation in-
volves nomore than feeding the received in-
put from the 2AALU at the previous tree level,
as well as the ” input, to its two logic gates.
Let’s consider an example where all the ”

inputs are 0. Given a circuit of tree depth
L, the output will be of length L→ 2 with en-

tries all being of value 1. Let’s see why. Sup-
pose the nest depth isL = 5. Here, the output
is (1, 1, 1). The leftmost entry is determined
at tree level ε = 4, the second at tree level
ε = 3, and the third entry determined at tree
level ε = 2. ! sends a 1, as always. ”4 will,
in this case, send a 0. So, the inputs at ε = 4

are 1 and 0. The AND gate will produce a
0, and the XOR gate will produce a 1, since
1 ↑ 0 = 0 and 1 ↭ 0 = 1. Thus, the computa-
tion proceeds to the vertex downstream of
the XOR gate. At the next level, ε = 3, an
AND gate and XOR gate are fed the 1 from
the XOR gate at ε = 4. We’ll write these new
gates as #AND

3
and #

XOR
3

. So, #AND
3

and #
XOR
3

re-
ceive a 1 from #

XOR
4

and another input from
”3. In this case, ”3 will also give a 0 (since
we’re considering the example of all ” val-
ues being 0). Thus, again, #XOR

3
will yield a

1, and #
AND
3

will yield a 0. At ε = 2, #AND
2

and
#
XOR
2

receive a 1 from #
XOR
3

and a 0 from ”2,
so #

AND
2

will give a 0, and #
XOR
2

will give a 1.
Downstream of #XOR

2
is a CPR whose address

A (CPR)matches the output values in the tree:
its address is (1, 1, 1). Thus, with respect to
the tree, we took a path of three consecu-
tive XOR gates and terminated at the (1, 1, 1)-
addressed processor register.

Figure 1: An illustration of a circuit tree with three 2AALUs. Each blue square is a ” input, and the
gray square is the ! input.

SciSci Inventions No. 3, Version 1.2 3/8

Combinational
2AALU Logic

!AALUS AND HENSEL
PROCESSOR ARITHMETIC

Figure 2: An illustration of the tree structure of the Hensel processor circuit, with each vertex its
own 2AALU, as visualized via a callout.

Next, suppose we modify (1, 1, 1) to (1, 0, 1).
The modification is given by ”3: it gives a 1.
Thus, #XOR

3
will give an output of 0, and #

AND
3

will give an output of 1; now we’ve taken
a new path down the tree, downstream of
#
AND
3

.

The CPR are positioned at the ends of cir-
cuit tree paths such that, for a given path,
its CPR has an address whose entries are the
same as the XOR gate values computed
by the 2AALUs that compose the path. In
this case, the address is (1, 0, 1), as were the
XOR gate values. We can be more pre-
cise. Let C = (V,A) be a directed graph with
vertices V and directed edges given by or-
dered pairs A, where deg

+(vi ↓ V) = 2 and
deg

→(vi ↓ V) = 1 (for i ↔ 1), deg→(vi ↓ V) = 0 for
the case of i = 0 (i.e., the source vertex),
and deg

+(vk ↓ V) = 0 where the vk, given
|V| = 2+

∑N=2

n=0
2
n, are the final 2N→2 vertices

(i.e., the sinks). A path in the circuit tree
can be written as $ = (V↑,A↑), where V

↑ ↗ V,
A
↑ ↗ A, and A

↑ = (v↑
1
, v↑

2
), (v↑

2
, v↑

3
), . . . , (v↑L→1

, v↑L).
Each v

↑
i
, for 2 ↘ i ↘ L→ 1, corresponds to

a 2AALU. Let val
#
XOR

ω (v↑
i
) be the XOR-gate

value of a given 2AALU. Then, in A
↑, the

vertex v
↑
L is a CPR whose address A is(

val
#
XOR

ω (v↑
1
) , . . . , val#XOR

ω

(
v
↑
L→1

))
. This is by de-

sign. With each path$ terminating in a di"er-
ent and unique CPR, we canwrite the path as
$

(
A(val!XOR

ω (v→1),...,val!XOR

ω (v→L↑1))
)
. One thus gets

ϑ-A matching for free; ϑ-modification via ”-
perturbation directs the circuit tree path to
the CPR with the matching address.

As another example, suppose we have a
nest depth of L = 7. Let our input operand
be (0, 1, 1, 0), with our arithmetic to yield
(1, 0, 1, 1). In this case, we begin with
$
(
A(0,1,1,0)

)
and obtain $

(
A(1,0,1,1)

)
. The

changes are executed by”5, ”4, and”2. We
will call the e"ectuated change-of-path un-
der ϑ-modification a ”-perturbation. That is
to say, ϑ-modification is performed at each
level, and the overall change e"ectuated in
the circuit tree is a ”-perturbation, with ϑ-
modification giving a new operand and ”-
perturbation giving a new $.

SciSci Inventions No. 3, Version 1.2 4/8

!AALUS AND THE CPU

3 2AALUs and the CPU

3.1 2AALU Packaging and

Nested Design

Naturally, a given path in the circuit tree
will necessarily progress down multiple tree
levels. Arithmetic operations amount to ”ω-
perturbations applied at each level ε. The
Hensel processor is itself of clustered form,
designed to deliver ”ω-perturbations in par-
allel, by arranging 2AALUs at multiple lev-
els. The multi-level design is modular and
nested. A given 2AALU at level ε = n (where
2 ↘ n ↘ L→ 1) is equipped with two logic
gates, each of which, in turn, feeds into
a 2AALU at level ε = n→ 1. Hardware-wise,
each ε = n 2AALU is packaged in a carrier. In
the case of the Hensel processor, these car-
riers are packaged inside one another, such
that the carrier for a 2AALU at level ε = n→ 1

fed by a 2AALU at level ε = n is packaged

within the carrier for the ε = n 2AALU, with
the ε = n→ 1 carrier necessarily of smaller size
than the ε = n 2AALU carrier. (It should be
noted, however, that although being pack-
aged within one another, all 2AALUs are
nonetheless to be directly surface-mounted
to the printed circuit board.) Nested pack-
aging as such is illustrated in Figure 3.

The correspondence between carrier pack-
aging and circuit tree structure is then as fol-
lows. A given 2AALU in a circuit tree will be
packaged in the carrier for the 2AALU that
is its parent vertex in the tree, as well as the
other 2AALU which shares the same parent
vertex. For a given 2AALU vertex v ↓ V in C, let
K be a set representing the carrier package
for the 2AALU. The nested packaging proce-
dure for the Hensel CPU processor is then as
follows:

(vi, vj) ↓ A =≃ K(vj) ↗ K(vi) (1)

Figure 3: Illustration of nested packaging for 2AALU carriers.

SciSci Inventions No. 3, Version 1.2 5/8

ω-Sequence Passing !AALUS AND THE CPU

Figure 4: Comparison of 2AALU combinational logic tree structure and processor register distri-
bution. The processor registers are highlighted blue (as sink vertices in the tree on the left and
as occupants of level ε = L in the nested processor structure on the right).

As illustrated in Figure 4, there is a correspon-
dence between the tree structure of 2AALU
combinational logic and the spatial distribu-
tion of processor registers in the Hensel pro-
cessor cluster. This correspondence is the
entirely by design: each path in the circuit
tree terminates at a distinct processor regis-
ter, and processor registers are positioned in
the processor cluster according to their loca-
tion in the circuit tree.

3.2 ω-Sequence Passing

Following a computation, the new operand,
the output, must in turn be taken up by the
load-store architecture of the Hensel CPU, as
described in previous reports. Not unlike the
case of hop calculus, the term "ω-sequence
passing" has been used previously as a high-
level shorthand for this process. Let us con-
sider a more rarefied description herein. For
expository gentleness, let us begin with the
non-parallelized case where, at any given
time, the master processor register, MPR, is
loaded with a particular operand. The FC-
3-2025 encoding of this operand is decom-
pounded into ϑ-IDs, which are then loaded
to cluster processor registers with matching

addresses. Each CPR has an addresses Aε
ϑ,

where ϑ is the matching ID and ω is the ω-
sequence. CPR-loading is described via load
operations ϖ. (See the Virtual Hensel report).

Once an arithmetic computation in the pro-
cessor has been completed, the new CPR at
which the circuit tree path terminates under
”-perturbation must in turn be loaded to the
MPR in place of the original input operand.
This is achieved via "re-loads" ϖre:

ϖA

re : A
ε
(↓,→,→) ⇐ Aµ(ε)

(↓,→,→) (2)

ϖB

re : A
ε
(→,↓,→) ⇐ Aµ(ε)

(→,↓,→) (3)

ϖC

re : A
ε
(→,→,↓) ⇐ Aµ(ε)

(→,→,↓) (4)

ϖD

re : A
ε
(→,↓,→) ⇐ Aµ(ε)

(→,↓,→) (5)

where µ is a modification, and µ(ϑ) be-
ing the ϑ-modified ID encoding the output
operand. (The significance of the subscripts,
such as (⇒,→,→) pertains to the RFC, LFC, and
TFC blocks in the FC-3-2025 encoding of the
operand, i.e., its ϑd-IDs, as described in the
Virtual Hensel Report. A discussion of loads,
i.e., ϖ mappings, can be found in the same
report.)

SciSci Inventions No. 3, Version 1.2 6/8

Hop Calculus !AALUS AND THE CPU

Re-loads give a precise description of what
in previous reports is described via the
shorthand of "ω-sequence passing": the ω-
sequences that were originally ϖ-loaded to
CPR whose addresses matched the input ϑd-
IDs are now re-loaded (i.e., ϖre-loaded) to
the output-ϑd-matching CPR, such that the
output ϑd-IDs, rather than the input ϑd-IDs,
are now loaded to MPR. Following these re-
loading operations, the output ϑd-IDs in MPR

are recompounded and sent to the load-
store unit (as discussed in the Virtual Hensel
report).

3.3 Hop Calculus

As discussed, the arithmetic operations
themselves are manifest in the ”ω inputs. The
processor executes all ”ω in parallel. Then,
the processor runs the path computation of
the ”-perturbation, which is not parallel, but
imposes but a small additional linear term,
O(n), where n = L→ 1. These ”ω are the so-
called "hop operations" in hop calculus; ”ω

inputs cause thepath to "hop" from the input-
terminating path to the output-terminating
path. One gets a new $ by changing at

least one ”ω value; thus, one can describe
2AALU arithmetic in terms of ” inputs alone,
i.e., in terms of hops, sparing the details of
its underlying combinational logic. Thus, it is
convenient to describe an arithmetic oper-
ation in hop calculus. For instance, returning
to the previous example of the computa-
tion yielding$

(
A(1,0,1,1)

)
from$

(
A(0,1,1,0)

)
, the

”ω-perturbations can be described solely in
terms of hops:

(
h
ϖ
5
, hϖ

4
, hϖ

2

)
. Here, a h

ϖ
ω hop is a

”ω input giving a 1 and a h
ϖ
ω hop is a ”ω input

giving a 0. (See the Virtual Hensel report for
a review of hop calculus notation.)

We canmore precisely describe the relation-
ships between hops and ”ω inputs. Suppose
we have a ϑd-ID loaded to a given cluster
processor register. Let ϑd

(→,→,↓) = (1, 1, 1, 0, 1),
which is the TFC block for the FC-3-2025 en-
coding of 29

32
. Suppose our arithmetic op-

eration modifies this ϑd block to (1, 0, 0, 0, 0).
(For instance, if the arithmetic is 29

32
→ 13

32
, the

output encoding will include the single block
ϑd
(→,→,↓) = (1, 0, 0, 0, 0).) Looking at the IDs,

one sees that three modifications are in or-
der, namely at ”6, ”4, and ”3. Figure 5 illus-
trates both tree paths, with the $ segments
that di"er by ”ω input highlighted purple.

Figure 5: An illustration of $
(
A(1,1,1,0,1)

→,→,↓

)
and $

(
A(1,0,0,0,0)

→,→,↓

)
. ”6, ”4, ”3 are highlighted purple.

SciSci Inventions No. 3, Version 1.2 7/8

Parallelization and Scaling !AALUS AND THE CPU

Figure 6: A three-dimensional illustration of Figure 5, with ε levels distinguished along the z axis.

Figure 7: Figure 5 as seen from a di"erent angle.

As one can see, ”6, ”4, and ”3 divert the
tree path from the processor register with ad-
dress A(1,1,1,0,1) to that with address A(1,0,0,0,0).
”6 directs the tree leftward, rather than right-
ward; ”4 also directs the tree leftward rather
than rightward; and ”3 directs the tree up-
ward rather than downward. Figures 6 and
7 give three-dimensional illustrations, with ε-
level parameterized by the z-axis, and the
points at level ε = 1 being the CPR at which
the computations terminate. These figures il-
lustrate the e"ect of ”-perturbations on both
circuit tree paths and the processor register
destinations.

3.4 Parallelization and Scaling

Thus far, our descriptions have been re-
stricted to a Hensel processor with a single
circuit tree. However, there is no reason why
multiple trees cannot be employed, so long
as each CPR is designed to accept multi-
ple inputs and the 2AALU carriers are de-
signed to package multiple trees. Multiple
trees would allow for parallelization of FC-
2-2025 instruction execution; the processor
could perform arithmetic on multiple inputs
via multiple circuit trees.

SciSci Inventions No. 3, Version 1.2 8/8

Published by SciSci Press

サ
イ
サ
イ
・
リ
サ
⃝
チ

S
ciS

ci R
esearch

	2-Adic Arithmetic Logic
	2AALUs and Hensel Processor Arithmetic
	Circuit Design
	Combinational 2AALU Logic

	2AALUs and the CPU
	2AALU Packaging and Nested Design
	-Sequence Passing
	Hop Calculus
	Parallelization and Scaling

