5
<
O
5
=
o
3
7]
Z
o
W

‘ Future Computing

D 3
) T

o——0 o——0 o——0 o——0

Hensel CPU Load-Store Architecture
Distributed Register Design for Exact
2-adic Arithmetic

James Douglas Boyd

SciSci Research, Inc. + Future Computing



SciSci Research, Inc.
Boulder, Colorado, United States
WWW.SCi—SCi.org

Copyright © 2025 by SciSci Research, Inc. All Rights Reserved.
Citation Format:
Boyd, J.D. (2025). Hensel CPU Load-Store Architecture: Distributed Register

Design for Exact 2—adic Arithmetic. SciSci Inventions, 1(3). DOI: 10.5281/
zenodo.17231246



CONTENTS CONTENTS

Contents
1 Load-Store for
2-Adic Operands 2
2 The Hensel CPU Load-Store
Architecture 2
21 CircuitDesign . . . . o 2
2.2 LSU Combinational Logic . . . . . . . . . 2
3 Design for the LSU and
Register Cluster 5
3.1 NestedPackaging . . . . . . . 5
3.2 w-Sequence PassSiNg . . . . . v 6
3.3 Hop Calculus . . . . . 7
3.4 Pardllelization and Scaling . . . . . . . 8

SciSci Inventions No. 3, Version 1.1 1/8



1 Load-Store for
2-Adic Operands

The Hensel CPU processor stores operands in
a distributed fashion in a cluster of processor
registers, with the distribution, re-distribution,
decompoundment, and compoundment of
operands performed by the load-store unit
(LSU). As discussed previously, Hensel per-
forms arithmetic in Q,, with the distributed
design of the register cluster intended to en-
hance computational efficiency by handlign
operands in a manner commensurate with
unique properties of p-adic fields, such as
nonarchimedean distance. In what follows,
a detailed description of how the LSU per-
forms load-store in the distributed

Previous reports on the Hensel CPU and
Virtual Hensel |, written to infroduce and
demonstrate architecture and functionality
(particularly regarding the processor), have
done so at the expense of giving a microar-
chitectural description of load-store. Instead,
for purposes of convenience, a description
of loads and reloads in the register cluster is
given in terms of "hop calculus", a whose ex-
planatory purpose is strictly high-level. Thus,
it is necessary that a resource be provided
on the fine details of the manner in which
operands are handled during exact arith-
metic.

2 The Hensel CPU Load-Store
Architecture

2.1 Circuit Design

The Hensel processor performs loads and
reloads in a largely parallelized fashion (plus
a small O(n) term). Processor load-store
is performed within a LSU circuit.  With
operands loaded to processor registers dis-
fributed throughout the register cluster, the
LSU also assumes a distributed form, consist-
ing of "loader" operators, which amount to
small gadgets in the LSU circuit that direct

SciSci Inventions No. 3, Version 1.1

THE HENSEL CPU LOAD-STORE
ARCHITECTURE

operand data to the appropriate register ad-
dresses.

The multi-level, nested design of the Hensel
processor has been subject to extensive dis-
cussion in previous reports,  Often, in dis-
cussion of the register cluster, one specifies
its nest depth, £. For instance, the Virtual
Hensel | processor cluster is of nest depth
5 (42), i.e., it has five LSU levels and two ad-
difional levels (one for the clustered proces-
sor registers, Cpr, at level ¢ =1 and one for
the master processor register and master LSU,
Mpr and Maary. atlevel ¢ = £). At the circuit
level, a processor with nest depth £ will have
a circuit free with 2 + 2£-2 vertices (with each
free being a DAG, Mpg being the source ver-
tex, and the Cpr being the sink vertices.)

LSU loaders perform load-store on operands
according to FC-2-2025 insfructions, which
guide the loaders in modifying the entries
in FC-3-2025 operand encodings. Loaders
perform modifications in a multi-level fashion,
with a processor of nest depth £ = n (+2) per-
forming modifications on length-n operands,
with each entry modified by a loader at a
different level. Thus, each entry is modified
by a different vertex at a different level in the
circuit tree. We write the levels in descend-
ing order, beginning with the source, Mpg, at
¢ = £ and ending withthe Cpg sinksat ¢ = 1. In
terms of level-wise modification, the leftmost
entry in the operand is modified by a loader
at level ¢ = £ — 1 and the rightmost entry is
modified by a loader at level ¢ = 2.

Loaders receive two kinds of inputs. Each cir-
cuit tree includes an initiator input v, issued
from level ¢ = £, which is always of value 1.
Each loader also has its own modificatory in-
put ¢, whose value depends on the FC-2-
2025 instruction for the arithmetic at hand.

2.2 LSU Combinational Logic

Descending the LSU tree, one finds the first
loader at level / = £ — 1. ¥ sends a 1 to both
the XOR and XNOR gates of this /=L -1
loader. The loader gates also receive a ¢ in-

2/8



LSU Combinational Logic

put. One of the gates, fed this input pair from
Vv and ¢, will give a 1 as output, the other
0. Each gate provides input for a loader at
the next level, giving a tree structure as illus-
frated in Figure 1. A loader is thus a tuple
(XOR, XNOR, @), and the circuit is a tree built
from loaders. The load computation contin-
ues downstream of the gate that gives a 1
output, terminating at a Cpr af level ¢ =1.
For each loader, the load computation in-
volves no more than feeding the received
input from the loaders at the previous tree
level, as well as the ¢ input, to its two logic
gates.

Let’s consider an example where all the ¢ in-
puts are 0. Given a circuit of free depth L,
the outfput will be of length £ — 2 with entries
all being of value 1. Let’s see why. Suppose
the nest depth is £ =5. Here, the output is
(1,1,1). The leffmost entry is determined at
free level ¢ = 4,the second af free level ¢ = 3,
and the third entry determined at tree level

v V

THE HENSEL CPU LOAD-STORE
ARCHITECTURE

(=2, Vsends al, as always. &, will, in this
case, send a 0. So, the inputsat /=4 are 1
and 0. The XNOR gate will produce a 0, and
the XOR gate will produce al,since1©0=0
and 1¢0=1. Thus, the computation pro-
ceeds to the vertex downstfream of the XOR
gate. At the next level, £ = 3, an XNOR gate
and XOR gate are fed the 1 from the XOR
gate at ¢ =4. We'll write these new gates
as MNOR gnd ¥OR, So, MNOR and 1XOR re-
ceive a 1 from F°R and another input from
®3. In this case, o5 will also give a 0 (since
we're considering the example of all ¢ val-
ues being 0). Thus, again, MX°R will yield a 1,
and MNOR will yield a 0. At ¢ =2, IXNOR and
r5OR receive a 1 from ¥R and a 0 from ®,,
so MNOR will give a 0, and M5Ok will give a 1.
Downstream of TX°R is a Cpr Whose address
2L (Cpr) Matches the output values in the tree:
its address is (1,1,1). Thus, with respect to
the tree, we took a path of three consecu-
tive XOR gates and terminated at the (1,1, 1)-
addressed processor register.

JE,

L

v V

Figure 1. Anillustration of an LSU circuit with three loaders. Each blue square is a ¢ input, and

the gray square is the W input.

SciSci Inventions No. 3, Version 1.1

3/8



THE HENSEL CPU LOAD-STORE
ARCHITECTURE

o—0—>0

— 1)

*<—0—>0

LSU Combinational Logic
o=-—=0—>0 @o<—0—>0 o—=0—>0
o—=0—>0 o—0—>0 o—=0—>0
*<—0—>0 o<—0—>0 | *—0—>0
o<—=0—>0 @o<—0—>0 @o—=0—>0

o—@—>0

Figure 2: An illustration of the tree structure of the Hensel processor circuit, with each vertex its

own loader, as visualized via a callout.

Next, suppose a Hensel arithmetic operation
modifies (1,1,1) fo (1,0,1). The LSU loads the
output to the register cluster by "reloading"
(1,1,1) fo (1,0,1). The reload modification is
effectuated by @s3: it gives a 1. Thus, I§OR
will give an output of 0, and TXNOR will give
an output of 1; now we've taken a new path
down the tree, downstream of MENOR,

The Cpr are positioned at the ends of cir-
cuit tree paths such that, for a given path,
its Cpr has an address whose entries are the
same as the XOR gate values computed
by the loaders that compose the path. In
this case, the address is (1,0, 1), as were the
XOR gate values. We can be more pre-
cise. Let € = (V,A) be a directed graph with
vertices V and directed edges given by or-
dered pairs A, where deg®(v; € V) =2 and
deg=(vi € V) =1 (fori > 1), deg (v € V) = 0 for
the case of i=0 (i.e., the source vertex),
and deg™ (v, € V) =0 where the v, given
V| =2+ N=22n, are the final 2N-2 vertices
(i.e.. the sinks). A path in the circuit tree
can be written as M = (V/,A"), where V' C V,
A C A and A" = (Vi,vh), (V5, V), ..., (V1. Ve).

SciSci Inventions No. 3, Version 1.1

Each v/, for 2 <i< £ —1, corresponds to a
loader.  Let “@IIXOR(y/) be the XOR-gate
value of a given loader. Then, in A/,
the vertex v/, is a Cpr Whose address 2 is
(@ITOR (v)), ..., @R (v,_,)). This is by de-
sign. With each path M terminating in a differ-
ent and unique Cpr, We can write the path as

One thus gefts

x-2 matching for free; y-modification via ¢-
perturbation directs the circuit tree path to
the Cpr With the matching address.

As another example, suppose we have a
nest depth of £ =7. Let our input operand
be (0,1,1,0), with our arithmetic operation
yielding (1,0,1,1). In this case, we begin
with M (A©11.0) and obtain M (AX01), The
changes are executed by ¢s5, &4, and ¢,. We
will call the effectuated change-of-path un-
der y-modification a ¢-perturbation. That is
to say, y-modification is performed at each
level, and the overall change effectuated in
the circuit tree is a $-perturbation, with y-
modification giving a new operand and ¢-
perturbation giving a new 1.

4/8



3 Design for the LSU and
Register Cluster

3.1 Nested Packaging

Naturally, a given path in the circuit tree
will necessarily progress down multiple tree
levels. Reloads amount to ¢ ,-perturbations
applied at each level ¢. The Hensel pro-
cessor is itself of clustered form, designed
to deliver ¢, -perturbations in parallel, by ar-
ranging loaders at multiple levels. The multi-
level design is modular and nested. A given
loader at level /=n (where 2<n<L-1)
is equipped with two logic gates, each of
which, in turn, feeds into a loader at level
¢ =n—1 Hardware-wise, each ¢ = n loader
is packaged in a carrier. In the case of the
Hensel processor, these carriers are pack-
aged inside one another, such that the car-
rier for a loader at level £ =n -1 fed by a

DESIGN FOR THE LSU AND
REGISTER CLUSTER

loader at level ¢ = n is packaged within the
carrier for the ¢ = n loader, withthe £ =n -1
carrier necessarily of smaller size than the
¢ = nloader carrier. (It should be noted, how-
ever, that although being packaged within
one another, all loader are nonetheless to be
directly surface-mounted to the printed cir-
cuit board.) Nested packaging as such is il-
lustrated in Figure 3.

The correspondence between carrier pack-
aging and circuit tree structure is then as fol-
lows. A given loader in a circuit free will be
packaged in the carrier for the loader that
is its parent vertex in the tree, as well as the
other loader which shares the same parent
vertex. For a given loader vertexv € Vin €, let
K be a set representing the carrier package
for the loader. The nested packaging proce-
dure for the Hensel CPU processor is then as
follows:

(Vi,Vj) cA = ]C(Vj) C /C(Vi) (])

£ =n
~
£=n-—1

V

V

Y

O

.

Figure 3: lllustration of nested packaging for loader carriers.

SciSci Inventions No. 3, Version 1.1

5/8



m-Sequence Passing

® L] ® ® ® L] *——0

DESIGN FOR THE LSU AND

oE  @ono
om | mm mm @mm
m||lmm||| || ==

Figure 4: Comparison of loader combinational logic tree structure and processor register distri-
bution. The processor registers are highlighted blue (as sink vertices in the tree on the left and
as occupants of level ¢ = £ in the nested processor structure on the right).

As illustrated in Figure 4, there is a correspon-
dence between the tree structure of loader
combinational logic and the spatial distribu-
fion of processor registers in the Hensel pro-
cessor cluster. This correspondence is the
entirely by design: each path in the circuit
free terminates at a distinct processor regis-
ter, and processor registers are positioned in
the processor cluster according to their loca-
fion in the circuit tree.

3.2 7-Sequence Passing

Following a computation, the new operand,
the outfput, must in turn be taken up by the
load-store architecture of the Hensel CPU, as
described in previous reports. Not unlike the
case of hop calculus, the term "r-sequence
passing" has been used previously as a high-
level shorthand for this process. Let us con-
sider a more rarefied description herein. For
expository gentleness, let us begin with the
non-parallelized case where, at any given
fime, the master processor register, Mpg, is
loaded with a particular operand. The FC-
3-2025 encoding of this operand is decom-
pounded into y-IDs, which are then loaded
to cluster processor registers with matching

SciSci Inventions No. 3, Version 1.1

addresses. Each Cpg has an addresses X,
where y is the matching ID and = is the =-
sequence. Cpr-loading is described via load
operations \. (See the Virtual Hensel report).

Once an arithmetic computation in the pro-
cessor has been completed, the new Cpg at
which the circuit tree path terminates under
d-perturbation must in turn be loaded to the
Mpr in place of the original input operand.
This is achieved via "re-loads" \.:

Mo s @
)‘Ee : lei,*,f) - m‘({ﬁﬁ) 3)
ER SR V. 4
PEERO I ©

where 4 is a modification, and p(x) be-
ing the y-modified ID encoding the outfput
operand. (The significance of the subscripts,
such as (x, —, —) pertains to the Rec, Lgc., and
Tec blocks in the FC-3-2025 encoding of the
operand, i.e., its x°-IDs, as described in the
Virtual Hensel Report. A discussion of loads,
i.e., A mappings, can be found in the same
report.)

6/8



Hop Calculus

Re-loads give a precise description of what
in previous reports is described via the
shorthand of "r-sequence passing": the -
seguences that were originally A-loaded to
Cpr Whose addresses matched the input y°-
IDs are now re-loaded (i.e., \.-loaded) fo
the output-y°-matching Cpr. such that the
output x°-IDs, rather than the input x°-IDs,
are now loaded to Mpg. Following these re-
loading operations, the output x°-IDs in Mpg
are recompounded and sent to the load-
store unit (as discussed in the Virtual Hensel
report).

3.3 Hop Calculus

As discussed, the reload modifications are
applied via change of ¢, inputs. The pro-
cessor executes all ¢, in parallel. Then, the
processor runs the path computation of the
d-perturbation, which is not parallel, but im-
poses but a small additional linear term, O(n),
where n = £ — 1. These ¢, are the so-called
'"hop operations" in hop calculus; ¢, inputs
cause the path to "hop" from the input-
tferminating path fo the output-terminating
path. One gets anew N by changing at least

DESIGN FOR THE LSU AND
REGISTER CLUSTER

one ¢, value; thus, one can describe loader
modifications in terms of ¢ inputs alone, i.e.,
in terms of hops, sparing the details of its
underlying combinational logic. Thus, it is
convenient to describe register reloading in
terms of hop calculus. For instance, return-
ing to the previous example of the compu-
tation yielding M (AX-01D) from M (A©:11.9)),
the o ,-perturbations can be described solely
in terms of hops: (hg,hf, hg). Here, a h7 hop
is a &, input giving a1 and a hy hopis a ¢, in-
put giving a 0. (See the Virtual Hensel report
for a review of hop calculus notation.)

We can more precisely describe the relation-
ships between hops and &, inputs. Suppose
we have a x°-ID loaded to a given cluster
processor register. Let X?_,_,*) =(1,1,1,0,1),
which is the Tgc block for the FC-3-2025 en-
coding of % Suppose our arithmetic op-
eration modifies this x° block fo (1,0,0,0,0).
(For instance, if the arithmetic is 22 — 33, the
output encoding will include the single block
X?,ﬁ*) =(1,0,0,0,0).) Looking at the IDs,
one sees that three modifications are in or-
der, namely at &g, &4, and 3. Figure 5 illus-
trates both free paths, with the M segments
that differ by ¢, input highlighted purple.

Figure 5: An illustration of N (2[9;371*’0’1)) and M (Ql(_ljo_’?;o’o)). ®g, 4, b3 are highlighted purple.

SciSci Inventions No. 3, Version 1.1

7/8



Parallelization and Scaling

DESIGN FOR THE LSU AND
REGISTER CLUSTER

Figure 6: A three-dimensional illustration of Figure 5, with ¢ levels distinguished along the z axis.

Figure 7: Figure 5 as seen from a different angle.

As one can see, &g, ¥4, and &3 divert the
free path from the processor register with ad-
dress A(111.0.1) 1o that with address 2((1:0:0.0.0),
dg directs the tree leftward, rather than right-
ward; ¢, also directs the tree leftward rather
than rightward; and &3 directs the free up-
ward rather than downward. Figures 6 and
7 give three-dimensional illustrations, with ¢-
level parameterized by the z-axis, and the
points at level ¢ = 1 being the Cpr at which
the computations terminate. These figures il-
lustrate the effect of ¢-perturbations on both
circuit tree paths and the processor register
destinations.

SciSci Inventions No. 3, Version 1.1

3.4 Parallelization and Scaling

Thus far, our descriptions have been re-
stricted to a Hensel processor with a single
circuit tfree. However, there is no reason why
multiple trees cannot be employed, so long
as each Cpr is designed to accept multi-
ple inputs and the loader carriers are de-
signed to package multiple frees. Multiple
trees would allow for parallelization of FC-
2-2025 instruction execution; the processor
could perform arithmetic on multiple inputs
via multiple circuit trees.

8/8



SciSci Research
PNYPY D —Y%

Published by SciSci Press



	Load-Store for  2-Adic Operands
	The Hensel CPU Load-Store  Architecture
	Circuit Design
	LSU Combinational Logic

	Design for the LSU and  Register Cluster
	Nested Packaging
	-Sequence Passing
	Hop Calculus
	Parallelization and Scaling


